摘要:
An attitude estimator that uses star tracker measurements and enhanced Kalman filtering, with or without attitude data, to provide three-axis rate estimates. The enhanced Kalman filtering comprises taking an average of forward and rearward propagations of the Kalman filter states and the error covariances. The star tracker-based rate estimates can be used to control the attitude of a satellite or to calibrate a sensor, such as a gyroscope.
摘要:
Systems and methods for providing improved navigation performance in which camera images are matched (using correlation) against reference images available from a geolocation-tagged database. An image-based navigation system partitions the camera image (corresponding to the area within the field-of-view of the camera) into a plurality of camera sub-images (corresponding to regions in that area), and then further partitions each camera sub-image into a multiplicity of tiles (corresponding to sub-regions within a region). The partitioning into camera sub-images seeks geometric diversity in the landscape. Each tile is checked for quality assurance, including feature richness, before correlation is attempted. The correlation results are further quality-checked/controlled before the results are used by the Kalman filter to generate corrections for use by the inertial navigation system. Respective lines-of-sight to multiple regions are measured using multiple tiles in each region to provide better observability and better performance.
摘要:
An attitude estimator that uses sun sensor outputs as the only attitude determination measurements to provide three-axis attitude information. This is accomplished by incorporating the Euler equation into the estimator. An unscented Kalman filter is employed to accommodate various nonlinear characteristics and uncertainties of the spacecraft dynamics and thus improve the robustness and accuracy of the attitude estimate.
摘要:
An attitude estimator that uses star tracker measurements and enhanced Kalman filtering, with or without attitude data, to provide three-axis rate estimates. The enhanced Kalman filtering comprises taking an average of forward and rearward propagations of the Kalman filter states and the error covariances. The star tracker-based rate estimates can be used to control the attitude of a satellite or to calibrate a sensor, such as a gyroscope.
摘要:
A celestial navigation system and method for determining a position of a vehicle. The system includes a star-tracker, a beam director, an inertial measurement unit, and a control module. The star-tracker has a field of view for capturing light. The beam director is configured to change a direction of the light captured in the field of view of the star-tracker. The inertial measurement unit has a plurality of sensors for measuring an acceleration and a rotation rate of the vehicle. The control module executes instructions to correct the attitude, the velocity and the position of the vehicle using the determined magnitude and position of the space objects. The control module also executes instructions to generate corrections to the IMU error parameters, the beam director and star-tracker alignment errors, and RSO ephemeris errors to achieve optimal performance.
摘要:
Methods and apparatus to reduce communications for position, navigation and timing (PNT) determinations are disclosed. A disclosed example apparatus to enable PNT determination for a mobile station includes at least one memory, machine readable instructions, and processor circuitry to at least one of instantiate or execute the machine readable instructions to identify features of signals of opportunity (SOOP) measured at a reference station, generate a model based on the identified features of the SOOP in conjunction with a position and a timing of the reference station, and provide at least one of the model or parameters associated with the model to the mobile station for the PNT determination.
摘要:
Sensor data fusion systems that provide noise reduction and fault protection. The sensor data fusion system fuses data acquired by respective accelerometers having different attributes. For example, one accelerometer has low noise and high bias, while another accelerometer has high noise and low bias when measuring specific force. The high-noise, low-bias accelerometer may be a gravimeter. Gravimeters and traditional accelerometers measure the same physical variable, i.e., specific force. By combining an expensive gravimeter and low-cost accelerometers, a synthetic sensor having both low noise and low bias may be achieved. Such synthetic sensors may be utilized in a gravity anomaly-referenced navigation system to achieve improved navigation performance.
摘要:
A celestial navigation system and method for determining a position of a vehicle. The system includes a star-tracker, a beam director, an inertial measurement unit, and a control module. The star-tracker has a field of view for capturing light. The beam director is configured to change a direction of the light captured in the field of view of the star-tracker. The inertial measurement unit has a plurality of sensors for measuring an acceleration and a rotation rate of the vehicle. The control module executes instructions to correct the attitude, the velocity and the position of the vehicle using the determined magnitude and position of the space objects. The control module also executes instructions to generate corrections to the IMU error parameters, the beam director and star-tracker alignment errors, and RSO ephemeris errors to achieve optimal performance.
摘要:
An attitude estimator that uses sun sensor outputs as the only attitude determination measurements to provide three-axis attitude information. This is accomplished by incorporating the Euler equation into the estimator. An unscented Kalman filter is employed to accommodate various nonlinear characteristics and uncertainties of the spacecraft dynamics and thus improve the robustness and accuracy of the attitude estimate.