Abstract:
Altitude measurement device including an atmospheric pressure sensor arranged to be compressed or to expand in a rectilinear direction as a function of the atmospheric pressure to be measured which increases or decreases, wherein the movements of deformation of the atmospheric pressure sensor are transformed, via a transmission system, into a pivoting motion, in a plane perpendicular to the rectilinear direction of deformation of the atmospheric pressure sensor, of an activation system which drives the pivoting of an indicator hand, wherein the indicator hand moves over a graduated circular scale, wherein the atmospheric pressure sensor is arranged to be able to be moved in one direction or in the opposite direction depending on the rectilinear direction of deformation thereof relative to the other components of the altitude measurement device, wherein the atmospheric pressure sensor is mounted on a seat which is fixed in a support, which forms a case with a cover.
Abstract:
Sealed device for calibrating an altitude measurement device comprising an atmospheric pressure sensor whose movements of deformation are converted, via a transmission system, into a pivoting motion of an activation system that drives the pivoting of an indicator hand, wherein a sensing element bearing on the atmospheric pressure sensor is rigidly fixed to a transmission shaft movable along its longitudinal axis of symmetry, wherein the calibration device includes an air intake that can adjust the pressure inside the calibration device as required, and also includes a first button via which the axial position of the transmission shaft can be adjusted, and a second button via which it is possible to move the atmospheric pressure sensor up or down.The invention also concerns a method for calibrating the altitude measurement device using the sealed calibration device.