Abstract:
A device for controlling or altering the temperature of a liquid at the point of dispensing. A temperature-altering device is thermally coupled to a dispensing device to compensate for heat dissipated into the liquid as it passes through the dispensing device during dispensing. The dispensing device may be for example, a miniature solenoid valve (microvalve), a piezoelectric printhead, or the like. According to aspects of the invention, a temperature-altering device provides or reduces heat at the point of dispensing in order to alter, control or maintain a constant temperature of the dispensed liquid. As a result, improvement is obtained in the consistency of the fluid regime of the dispensed droplet stream. The temperature-altering device may be a thermoelectric device capable of moving heat either from or to the dispensing structure, or may be a heater. This device may be used beneficially even when the dispensing is performed near room temperature and the liquid does not require heating to maintain its liquid state.
Abstract:
Apparatus, systems and methods for use in three-dimensional printing are shown and described. Various embodiments of the invention allow for more precise and controlled delivery of heat to achieve interlayer drying; isolation of the working region from the outside for reasons of cleanliness and in connection with the vapors of organic solvents; better control of the temperature of the working region; better accuracy in the flowrates of binder fluid dispensed; matching of delivered flowrates for multiple dispensers; verification of delivered flowrate or drops; provision for easier changeover of the machine from one powder to another; cleanability; and other needs.
Abstract:
Apparatus, systems and methods for use in three-dimensional printing are shown and described. Various embodiments of the invention allow for more precise and controlled delivery of heat to achieve interlayer drying; isolation of the working region from the outside for reasons of cleanliness and in connection with the vapors of organic solvents; better control of the temperature of the working region; better accuracy in the flowrates of binder fluid dispensed; matching of delivered flowrates for multiple dispensers; verification of delivered flowrate or drops; provision for easier changeover of the machine from one powder to another; cleanability; and other needs.
Abstract:
Apparatus, systems and methods for use in three-dimensional printing are shown and described. Various embodiments of the invention allow for more precise and controlled delivery of heat to achieve interlayer drying; isolation of the working region from the outside for reasons of cleanliness and in connection with the vapors of organic solvents; better control of the temperature of the working region; better accuracy in the flowrates of binder fluid dispensed; matching of delivered flowrates for multiple dispensers; verification of delivered flowrate or drops; provision for easier changeover of the machine from one powder to another; cleanability; and other needs.