摘要:
A compact high average power mid infrared range laser for ultrasound inspection. The laser comprises one of a Nd:YAG or Yb:YAG laser pumped by a diode at 808 nm to produce a 1 micron output beam. The 1 micron output beam is directed to an optical parametric oscillator where the beam wavelength is converted to 1.94 microns and conveyed to a mid infrared emission head. The emission head comprises one of a Ho:YAG or Ho:YLG laser optically coupled with a second optical parametric oscillator. The second optical parametric oscillator forms a generation output beam for creating ultrasonic displacements on a target. The generation output beam wavelength ranges from about 3 to about 4 microns, and can be 3.2 microns.
摘要:
A method of spectroscopic analysis of a material using a laser ultrasound system. The method includes measuring amplitude displacement of a target surface that has been excited with a generation laser. The amplitude displacements relate to the target's optical absorption properties. Amplitude displacements are generated over a range of laser wavelengths to obtain an optical absorption signature useful to identify the target material characteristics.
摘要:
A method of ultrasonic testing comprising conditioning a radiation wave from a laser source by efficiently converting the radiation wave's wavelength to a mid-IR wavelength for enhanced ultrasonic testing of a composite. The method includes passing the radiation wave through a first optical frequency converter where the radiation wave is converted into a signal wave and an idler wave, where the idler wave is at a mid-IR wavelength. The method further includes directing the signal and idler waves to a second optical frequency converter where the signal wave wavelength is converted to a mid-IR wavelength which combines with the idler wave to form a generation wave. The generation wave is directed at a composite surface to be tested.
摘要:
A method of spectroscopic analysis of a material using a laser ultrasound system. The method includes measuring amplitude displacement of a target surface that has been excited with a generation laser. The amplitude displacements relate to the target's optical absorption properties. Amplitude displacements are generated over a range of laser wavelengths to obtain an optical absorption signature useful to identify the target material characteristics.
摘要:
A method of ultrasonic testing comprising conditioning a radiation wave from a laser source by efficiently converting the radiation wave's wavelength to a mid-IR wavelength for enhanced ultrasonic testing of a composite. The method includes passing the radiation wave through a first optical frequency converter where the radiation wave is converted into a signal wave and an idler wave, where the idler wave is at a mid-IR wavelength. The method further includes directing the signal and idler waves to a second optical frequency converter where the signal wave wavelength is converted to a mid-IR wavelength which combines with the idler wave to form a generation wave. The generation wave is directed at a composite surface to be tested.
摘要:
A mid infrared range laser source for ultrasound inspection having a high energy laser coupled with one or more harmonic generation devices. The high energy laser may be a CO2 laser and tuned to emit laser light at a single wavelength. The harmonic generation devices convert the laser beam into the mid infrared range for optimal ultrasound inspection.
摘要:
A compact high average power mid infrared range laser for ultrasound inspection. The laser comprises one of a Nd:YAG or Yb:YAG laser pumped by a diode at 808 nm to produce a 1 micron output beam. The 1 micron output beam is directed to an optical parametric oscillator where the beam wavelength is converted to 1.94 microns and conveyed to a mid infrared emission head. The emission head comprises one of a Ho:YAG or Ho:YLG laser optically coupled with a second optical parametric oscillator. The second optical parametric oscillator forms a generation output beam for creating ultrasonic displacements on a target. The generation output beam wavelength ranges from about 3 to about 4 microns, and can be 3.2 microns.
摘要:
A mid infrared range laser source for ultrasound inspection that comprises a high energy laser coupled with one or more harmonic generation devices. The high energy laser may be a CO2 laser and tuned to emit laser light at a single wavelength. The harmonic generation devices convert the laser beam into the mid infrared range for optimal ultrasound inspection.
摘要:
The invention provides for ultrasonically measuring the porosity in a sample composite material by accessing only one side of the sample composite material and includes the steps of measuring a sample ultrasonic signal from the sample composite material, normalizing the sample ultrasonic signal relative to the surface echo of the sample composite material, and isolating a sample back-wall echo signal from the sample ultrasonic signal. A sample frequency spectrum of the sample back-wall ultrasonic signal is then determined. Next, the method and system include the steps of measuring a reference ultrasonic signal from a reference composite material, normalizing the reference ultrasonic signal relative to the surface echo of the reference composite material; and isolating a reference back-wall echo signal from the sample ultrasonic signal. A reference frequency spectrum of the reference back-wall ultrasonic signal is then determined. The invention further includes deriving the ultrasonic attenuation of the sample ultrasonic signal as the ratio of the sample frequency spectrum to the reference frequency spectrum over a predetermined frequency range. Comparing the derived ultrasonic attenuation to predetermined attenuation standards permits evaluating the porosity of the sampled composite material.
摘要:
The present invention provides an optical filter assembly that reduces the phase and amplitude noise of a detection laser used to detect ultrasonic displacements. The filtered detection laser is directed to the surface of a remote target. Ultrasonic displacements at the surface scatter the filtered detection laser. Collection optics then gather phase modulated light scattered by the surface and direct the phase modulated light to an optical processor to produce a signal representative of the ultrasonic displacements with an improved SNR. Additional processors may determine the structure of the remote target.