摘要:
Predicting a drill string stuck pipe event. At least some of the illustrative embodiments are methods including: receiving a plurality of drilling parameters from a drilling operation; applying the plurality of drilling parameters to an ensemble prediction model comprising at least three machine-learning algorithms operated in parallel, each machine-learning algorithm predicting a probability of occurrence of a future stuck pipe event based on at least one of the plurality of drilling parameters, the ensemble prediction model creates a combined probability based on the probability of occurrence of the future stuck pipe event of each machine-learning algorithm; and providing an indication of a likelihood of a future stuck pipe event to a drilling operator, the indication based on the combined probability.
摘要:
Predicting a drill string stuck pipe event. At least some of the illustrative embodiments are methods including: receiving a plurality of drilling parameters from a drilling operation; applying the plurality of drilling parameters to an ensemble prediction model comprising at least three machine-learning algorithms operated in parallel, each machine-learning algorithm predicting a probability of occurrence of a future stuck pipe event based on at least one of the plurality of drilling parameters, the ensemble prediction model creates a combined probability based on the probability of occurrence of the future stuck pipe event of each machine-learning algorithm; and providing an indication of a likelihood of a future stuck pipe event to a drilling operator, the indication based on the combined probability.
摘要:
A data classification method and apparatus are disclosed for labeling unknown objects. The disclosed data classification system employs a learning algorithm that adapts through experience. The present invention classifies objects in domain datasets using data classification models having a corresponding bias and evaluates the performance of the data classification. The performance values for each domain dataset and corresponding model bias are processed to identify or modify one or more rules of experience. The rules of experience are subsequently used to generate a model for data classification. Each rule of experience specifies one or more characteristics for a domain dataset and a corresponding bias that should be utilized for a data classification model if the rule is satisfied. The present invention dynamically modifies the assumptions (bias) of the learning algorithm to improve the assumptions embodied in the generated models and thereby improve the quality of the data classification and regression systems that employ such models. The disclosed self-adaptive learning process will become increasingly more accurate as the rules of experience are accumulated over time.
摘要:
A data classification method and apparatus are disclosed for labeling unknown objects. The disclosed data classification system employs a learning algorithm that adapts through experience. The present invention classifies objects in domain datasets using data classification models having a corresponding bias and evaluates the performance of the data classification. The performance values for each domain dataset and corresponding model bias are processed to identify or modify one or more rules of experience. The rules of experience are subsequently used to generate a model for data classification. Each rule of experience specifies one or more characteristics for a domain dataset and a corresponding bias that should be utilized for a data classification model if the rule is satisfied. The present invention dynamically modifies the assumptions (bias) of the learning algorithm to improve the assumptions embodied in the generated models and thereby improve the quality of the data classification and regression systems that employ such models. A dynamic bias may be employed in the meta-learning algorithm by utilizing two self-adaptive learning algorithms. In a first function, each self-adaptive learning algorithm generates models used for data classification. In a second function, each self-adaptive learning algorithm serves as an adaptive meta-learner for the other adaptive learning algorithm.
摘要:
Euclidean analysis is used to define queries in terms of a multi-axis query space where each of the keywords T1, T2, . . . Ti, . . . Tn is assigned an axis in that space. Sets of test queries St for each one from one of a plurality of server sources, are plotted in the query space. Clusters of the search terms are identified based on the proximity of the plotted query vectors to one another. Predominant servers are identified for each of the clusters. When a search query Ss is received, the location of its vector is determined and the servers accessed by the search query Ss are those that are predominant in the cluster which its vector may fall or is in closest proximity to.
摘要:
A data classification method and apparatus are disclosed for labeling unknown objects. The disclosed data classification system employs a model selection technique that characterizes domains and identifies the degree of match between the domain meta-features and the learning bias of the algorithm under analysis. An improved concept variation meta-feature or an average weighted distance meta-feature, or both, are used to fully discriminate learning performance, as well as conventional meta-features. The “concept variation” meta-feature measures the amount of concept variation or the degree of lack of structure of a concept. The present invention extends conventional notions of concept variation to allow for numeric and categorical features, and estimates the variation of the whole example population through a training sample. The “average weighted distance” meta-feature of the present invention measures the density of the distribution in the training set. While the concept variation meta-feature is high for a training set comprised of only two examples having different class labels, the average weighted distance can distinguish between examples that are too far apart or too close to one other.