摘要:
An apparatus for agitating a workpiece in a high pressure environment comprises a workpiece holder, a bearing, a pressure chamber housing, and a nozzle. The workpiece holder couples to the pressure chamber housing via the bearing. The nozzle couples to the pressure chamber housing. The workpiece holder comprises protrusions and a region for holding the workpiece. In operation a fluid exits the nozzle and impinges the protrusions of the workpiece holder causing the workpiece holder to rotate, which agitates the workpiece.
摘要:
A vacuum chuck for holding a semiconductor wafer during high pressure processing comprises a wafer platen, first through third lift pins, and an actuator mechanism. The wafer platen comprises a smooth surface, first through third lift pin holes, and a vacuum opening. In use, the vacuum opening applies vacuum to a surface of a semiconductor wafer, which chucks the semiconductor wafer to the wafer platen. The first through third lift pins mount within the first through third lift pin holes, respectively. The actuator mechanism couples the first through third lifting pins to the wafer platen. The actuator mechanism operates to extend the first through third lift pins in unison above the smooth surface of the wafer platen. The actuator mechanism operates to retract the first through third lift pins in unison to at least flush with the smooth surface of the wafer platen.
摘要:
A hinge assembly and methods for mounting a hatch relative to a port defined in a cover of a vacuum chamber to close and open the port. A torsion rod mounted between the port and the hatch is in torsion when the hatch is in a closed position relative to the port, assisting port-opening motion. A sleeve surrounds the rod and is movable with the hatch. Friction hinge structures between the cover and the sleeve, and between the hatch and a second sleeve are in a friction-engaging relationship with the corresponding sleeve. Each friction hinge structure provides high resistance to relative motion between a friction spring and the corresponding sleeve. During the port-opening motion of the hatch the friction springs provide low resistance to such relative motion. The hinge structures provide tolerance resistance and vacuum compliance by allowing relative movement between a hinge mounting plate and the hatch. During vacuum pumping, the hinges allow the hatch to move from an O-ring pre-load position, to an intermediate position, and then to a final position so that the pre-loaded O-ring compresses to an operational O-ring compression. Since the hinges permit the O-ring pre-load position to exist prior to vacuum operation and under all variations of certain manufacturing tolerances, the full range of relative motion between the plate and the hatch is permitted, such that the sealing surfaces seal in a tolerance resistance and vacuum compliant manner.
摘要:
A locking microcentrifuge tube (10) is provided which is capable of being sealed in either of two manners, one being a friction-fit seal which is easily opened and the other being a "locked" seal for higher stress applications. The tube body (12) is adapted to mate with the cap (14) at an aperture (24) such that the plug portion (36) of the cap (14) and the aperture (24) form the friction-fit seal at the early stages of insertion. A collar (26) is provided about the aperture (24) on the tube body (12). The collar (26) is formed to include one or more circumferential projections (28, 30). The cap (14) is formed to include depressions (32, 34) adapted to mate with the projections (28, 30) upon full insertion of the plug portion (36) to create the "locked" seal. The cap (14) is secured to the tube body (12) by a hinge (38) and a tab (40). The primary usage of the locking microcentrifuge tube (10) is in biomedical laboratory analysis. The tube (10) may be manufactured in various volumes and shapes to adapt to different microcentrifuges and desired sample sizes.