Abstract:
An offshore monitoring system, for an electrical power cable connected between a fixed point and a movable point, or for an electrical power cable connecting two movable points. The system comprises at least one optical fiber acting as a continuously distributed strain measurement sensor attached to or arranged in said power cable, a device arranged for sending optical signals and a device arranged for receiving optical signals to determine the time variant bending of said power cable.
Abstract:
An apparatus and a method for jointing a first optical fiber and a second optical fiber, the apparatus includes a composite cable, where the composite cable includes an electric power cable, a first optical fiber cable including the first optical fiber, and a second optical fiber cable including the second optical fiber, wherein the apparatus includes a first routing device and a second routing device, each routing device being arranged to change the direction of a fiber optic path from a first axis to a second axis and including a first optical fiber portion aligned with the first axis, a second optical fiber portion aligned with the second axis, and an intermediate optical fiber portion integral with the first and second optical fiber portions and extending through an arc between the first and second optical fiber portions, the intermediate optical fiber portion in the region of the arc having a reduced diameter in relation to the diameter of the first and second optical fiber portions, wherein the first optical fiber is optically connected to the first optical fiber portion of the first routing device, wherein the second optical fiber is optically connected to the first optical fiber portion of the second routing device, and wherein the second optical fiber portion of the first routing device is optically connected to the second optical fiber portion of the second routing device.
Abstract:
An apparatus and a method for jointing a first optical fibre and a second optical fibre, the apparatus includes a composite cable, where the composite cable includes an electric power cable, a first optical fibre cable including the first optical fibre, and a second optical fibre cable including the second optical fibre, wherein the apparatus includes a first routing device and a second routing device, each routing device being arranged to change the direction of a fibre optic path from a first axis to a second axis and including a first optical fibre portion aligned with the first axis, a second optical fibre portion aligned with the second axis, and an intermediate optical fibre portion integral with the first and second optical fibre portions and extending through an arc between the first and second optical fibre portions, the intermediate optical fibre portion in the region of the arc having a reduced diameter in relation to the diameter of the first and second optical fibre portions, wherein the first optical fibre is optically connected to the first optical fibre portion of the first routing device, wherein the second optical fibre is optically connected to the first optical fibre portion of the second routing device, and wherein the second optical fibre portion of the first routing device is optically connected to the second optical fibre portion of the second routing device.
Abstract:
The pipeline section of the gas-insulated pipeline has an insulating gas-filled encapsulation including a polymer pipe. A current conductor is arranged inside the capsule pipe and extends parallel to the latter's axis and is supplied with a high voltage. This current conductor is retained by insulators that rest on the inside surface of the capsule pipe. At least one of a plurality of post insulators has a support ring resting on the mantle surface of the current conductor. At least three evenly distributed and hollow support elements are molded peripherally in a star shape on the support ring, each of which has transversely to a longitudinal axis a profile that is constructed in the shape of an arch or trapezoid. The support elements each have a shell-shaped foot. Each shell-shaped foot has a thickness (d) which is smaller than a distance (a) between the current conductor and the inside surface of the capsule pipe and smaller than a length (l) in an axial direction of the capsule pipe. At least two of the feet rest on the inside surface of the capsule pipe. This keeps the electric field strength in the gaps between the post insulators and the inside surface of the polymer capsule pipe at a minimum and thus optimizes the di-electric stability of the pipeline section.