摘要:
Systems and methods are disclosed to find dynamic social networks by applying a dynamic stochastic block model to generate one or more dynamic social networks, wherein the model simultaneously captures communities and their evolutions, and inferring best-fit parameters for the dynamic stochastic model with online learning and offline learning.
摘要:
Systems and methods are disclosed to find dynamic social networks by applying a dynamic stochastic block model to generate one or more dynamic social networks, wherein the model simultaneously captures communities and their evolutions, and inferring best-fit parameters for the dynamic stochastic model with online learning and offline learning.
摘要:
Systems and methods for classifying documents each having zero or more links thereto include generating a link matrix; generating a document term matrix; and jointly factorizing the document term matrix and the link matrix.
摘要:
Systems and methods for classifying documents each having zero or more links thereto include generating a link matrix; generating a document term matrix; and jointly factorizing the document term matrix and the link matrix.
摘要:
Systems and methods are disclosed to analyze a social network by generating a data tensor from social networking data; applying a non-negative tensor factorization (NTF) with user prior knowledge and preferences to generate a core tensor and facet matrices; and rendering information to social networking users based on the core tensor and facet matrices.
摘要:
Systems and methods are disclosed to analyze a social network by generating a data tensor from social networking data; applying a non-negative tensor factorization (NTF) with user prior knowledge and preferences to generate a core tensor and facet matrices; and rendering information to social networking users based on the core tensor and facet matrices.
摘要:
Systems and methods are disclosed for factorizing high-dimensional data by simultaneously capturing factors for all data dimensions and their correlations in a factor model, wherein the factor model provides a parsimonious description of the data; and generating a corresponding loss function to evaluate the factor model.
摘要:
Systems and methods are disclosed for summarizing multiple documents by generating a model of the documents as a mixture of document clusters, each document in turn having a mixture of sentences, wherein the model simultaneously representing summarization information and document cluster structure; and determining a loss function for evaluating the model and optimizing the model.
摘要:
Systems and methods are disclosed for summarizing multiple documents by generating a model of the documents as a mixture of document clusters, each document in turn having a mixture of sentences, wherein the model simultaneously representing summarization information and document cluster structure; and determining a loss function for evaluating the model and optimizing the model.
摘要:
Systems and methods are disclosed for factorizing high-dimensional data by simultaneously capturing factors for all data dimensions and their correlations in a factor model, wherein the factor model provides a parsimonious description of the data; and generating a corresponding loss function to evaluate the factor model.