摘要:
An auto-focus system employing a tunable liquid crystal lens is provided that collects images at different optical power values as the liquid crystal molecules are excited between a ground state and a maximum optical power state tracking image focus scores. An image is acquired at a desired optical power value less than maximum optical power established with the liquid crystal molecules closer a fully excited state than the maximum optical power state having the same image focus score. This drive signal employed during image acquisition uses more power than was used to achieve the same optical power value during the auto-focus scan, while actively driving the liquid crystal molecules is fast. A pause due to image transfer/processing delays after acquisition is employed to allow slow relaxation of the liquid crystal molecules back to the ground state in preparation for a subsequent focus search.
摘要:
A liquid crystal optical device is provided. The optical device includes a liquid crystal cell controlling optical properties of light passing therethrough and has: a liquid crystal layer, a planar electrode located to one side of said liquid crystal layer; an electric field control structure located to the opposite side of the liquid crystal layer; and a wavefront adjustment structure configured to provide optical phase front adjustment. In some embodiments the wavefront adjustment structure is a conductive floating electrode. In other embodiments the wavefront adjustment structure is a weakly conductive structure having spatially variable sheet resistance. In other embodiments the wavefront adjustment structure a weakly conductive structure having spatially variable sheet resistance having a frequency dependent characteristic.
摘要:
A tunable optical imaging system uses a fixed lens and a tunable liquid crystal lens that is operated only outside of an operational range of high aberration. A voltage range applied to change the optical power of the liquid crystal lens is limited to a continuous tunable range of low aberration. The relative positioning between the lens and a corresponding photodetector, and the relative lens powers of a fixed lens and the tunable lens, may be selected to compensate for any optical power offsets resulting from the limitation of the voltage range of the tunable lens. The lens may be operated in either positive tunability or negative tunability mode.
摘要:
Methods are provided for wafer scale manufacturing camera modules without adjustment components to compensate for assembly errors and optical errors incurred within manufacturing tolerances. Camera modules are assembled in wafer arrays from arrays of image sensors, arrays of lens structures and arrays of optical trim elements. At least one of the arrays is a wafer. Lens structures are configured to provide less optical power than necessary to focus an image at infinity on image sensors without trim elements. A test performed during the wafer scale assembly of camera modules, after at least the sensor array and the lens structure array assembled, determines optical errors by identifying optical distortions and aberrations quantified in terms of optical power, astigmatism, coma, optical axis shift and optical axis reorientation deficiencies. Corresponding trim elements are configured to counteract distortions and aberrations prior to singulating useful camera modules from the array.
摘要:
A tunable optical imaging system uses a fixed lens and a tunable liquid crystal lens that is operated only outside of an operational range of high aberration. A voltage range applied to change the optical power of the liquid crystal lens is limited to a continuous tunable range of low aberration. The relative positioning between the lens and a corresponding photodetector, and the relative lens powers of a fixed lens and the tunable lens, may be selected to compensate for any optical power offsets resulting from the limitation of the voltage range of the tunable lens. The lens may be operated in either positive tunability or negative tunability mode.
摘要:
A liquid crystal optical device has a layered structure with split liquid crystal layers having alignment surfaces that define in a liquid crystal material pre-tilt angles of opposite signs. Four liquid crystal layers can provide two directions of linear polarization. In the case of a lens, the device can be a gradient index lens, and the alignment surfaces can have a spatially uniform pre-tilt.
摘要:
A tunable-focusing liquid crystal lens (TLCL) cell has a liquid crystal layer arranged within a cell gap defined between substrates, a layer of optically transparent material arranged between the first substrate and the LC layer, and a liquid crystal alignment layer arranged between the optically transparent layer and the LC layer. The alignment layer is provided on a third optically transparent substrate having a non-planar shape for giving a non-planar profile to the LC layer, which substrate is obtained from a flexible sheet initially provided with the alignment layer and then formed into the non-planar shape. The lens further has a first optically transparent electrode provided on the second substrate, a second optically transparent electrode provided on either or both of first and third substrates. The electrodes are arranged to generate an electric field acting on the LC layer to change the focal distance of the LC cell. Methods for fabricating such TLCL cell are also provided
摘要:
A variable focus liquid crystal lens includes a nematic liquid crystal/monomer mixture having a spatially inhomogenous polymer network structure, and an electrode for applying a substantially uniform voltage to the nematic liquid crystal/monomer mixture. The lens is created within a cell by applying a substantially uniform electric field to the nematic liquid crystal/monomer mixture within the cell, while simultaneously irradiating the nematic liquid crystal/monomer mixture using a laser beam having a shaped intensity distribution, so as to induce formation of a spatially inhomogenous polymer network structure within the cell.
摘要:
An electromagnetic source has an electrode structure coupled to a substrate. The electrode structure has interspaced electrodes, at least one of which is spiral-shaped. At least one electrical contact interconnects the electrodes of the electrode structure. The electrode structure is responsive to an applied electrical current to generate a spatially non-uniform magnetic field. This field can act on a LC layer such that optical properties of the layer are controllable.
摘要:
A variable focus liquid crystal lens includes a nematic liquid crystal/monomer mixture having a spatially inhomogenous polymer network structure, and an electrode for applying a substantially uniform voltage to the nematic liquid crystal/monomer mixture. The lens is created within a cell by applying a substantially uniform electric field to the nematic liquid crystal/monomer mixture within the cell, while simultaneously irradiating the nematic liquid crystal/monomer mixture using a laser beam having a shaped intensity distribution, so as to induce formation of a spatially inhomogenous polymer network structure within the cell.