摘要:
Red-eye detection based on red region detection with eye confirmation initially identifies pixels that correspond to the color of red-eye within an image. A determination is then made as to whether these identified pixels and surrounding areas are part of an eye or not part of an eye. Those identified pixels that are determined to be part of an eye are the detected red-eye regions.
摘要:
Red-eye detection based on red region detection with eye confirmation initially identifies pixels that correspond to the color of red-eye within an image. A determination is then made as to whether these identified pixels and surrounding areas are part of an eye or not part of an eye. Those identified pixels that are determined to be part of an eye are the detected red-eye regions.
摘要:
Red-eye detection based on red region detection with eye confirmation initially identifies pixels that correspond to the color of red-eye within an image. A determination is then made as to whether these identified pixels and surrounding areas are part of an eye or not part of an eye. Those identified pixels that are determined to be part of an eye are the detected red-eye regions.
摘要:
Disclosed herein are systems methods and devices related to region detection of an image. Detected regions include pixels of a particular one or more colors without requiring faces within the image to be previously detected. Region detection may include receiving information that a flash was used to capture the image or that return light was detected in the image.
摘要:
Red-eye detection based on red region detection with eye confirmation initially identifies pixels that correspond to the color of red-eye within an image. A determination is then made as to whether these identified pixels and surrounding areas are part of an eye or not part of an eye. Those identified pixels that are determined to be part of an eye are the detected red-eye regions.
摘要:
Red-eye detection based on red region detection with eye confirmation initially identifies pixels that correspond to the color of red-eye within an image. A determination is then made as to whether these identified pixels and surrounding areas are part of an eye or not part of an eye. Those identified pixels that are determined to be part of an eye are the detected red-eye regions.
摘要:
Red-eye detection based on red region detection with eye confirmation initially identifies pixels that correspond to the color of red-eye within an image. A determination is then made as to whether these identified pixels and surrounding areas are part of an eye or not part of an eye. Those identified pixels that are determined to be part of an eye are the detected red-eye regions.
摘要:
Disclosed herein are systems methods and devices related to region detection of an image. Detected regions include pixels of a particular one or more colors without requiring faces within the image to be previously detected. Region detection may include receiving information that a flash was used to capture the image or that return light was detected in the image.
摘要:
Red-eye detection based on red region detection with eye confirmation initially identifies pixels that correspond to the color of red-eye within an image. A determination is then made as to whether these identified pixels and surrounding areas are part of an eye or not part of an eye. Those identified pixels that are determined to be part of an eye are the detected red-eye regions.
摘要:
Shape suppression is used to identify areas of images that include particular shapes. According to one embodiment, a Vector Quantization (VQ)-based shape classifier is designed to identify the vertical edges of a set of shapes (e.g., English letters and numbers). A shape suppression filter is applied to the candidate areas, which are identified from a vertical edge map according to the edge density, to remove the vertical edges which are not classified as characteristic of shapes. Areas with high enough edge density after the filtering are identified as potential areas of the image that include one or more of the set of shapes.