摘要:
The present invention relates to a wavelength converter of structure enabling generation of converted light with high power even with a large difference between the wavelength of pumping light and the zero-dispersion wavelength. The wavelength converter includes an optical fiber having a dispersion slope whose absolute value at the wavelength of 1550 nm is 0.01 ps/nm2/km or less, for example.
摘要:
The present invention provides a dispersion-shifted fiber which can effectively restrain nonlinear optical effects from occurring and is suitable for long-haul transmission. As characteristics at a wavelength of 1,550 nm, this dispersion-shifted fiber has a dispersion whose absolute value is from 1.0 to 4.5 ps/nm/km, an effective core cross-sectional area of at least 70 &mgr;m2, a cutoff wavelength of at least 1,300 nm at a fiber length of 2 m, and a dispersion slope of 0.05 to 0.09 ps/nm2/km. Also, in this dispersion-shifted fiber, the position where the optical power distribution in the fundamental mode of the signal light is maximized is radially separated from the center of the core region by a predetermined distance, and, when the optical power in the fundamental mode of signal light at the center of core region is P0, and the maximum value of the optical power distribution in the fundamental mode is P1, the maximum value P1 is greater than the value of 1.2 times the optical power P0 at the center of core region.
摘要:
The invention is directed to a dispersion-compensating optical fiber which can compensate for the chromatic dispersion and dispersion slope of a non-zero dispersion-shifted optical fiber by a short length. The dispersion-shifted optical fiber constitutes an optical transmission line together with a dispersion-compensating optical fiber fusion-spliced thereto. The dispersion-compensating optical fiber has, at a wavelength of 1550 nm, a chromatic dispersion DDCF of −40 ps/nm/km or less and a ratio (DDCF/SDCF) of dispersion slope SDCF to the chromatic dispersion DDCF of 0.005/nm or more.
摘要:
There is provided an optical fiber transmission-line with which the four-wave mixing generation can be suppressed effectively and also transmission loss is small. An optical fiber transmission-line 10 is dispersion-managed by a single silica optical fiber thereof being provided alternately in its longitudinal direction with parts 10a where the chromatic dispersion at the wavelength 1550 nm is positive and parts 10b where it is negative. In any one repeater span of the transmission-line there are at least four sign change positions P at which the sign of the chromatic dispersion changes in the longitudinal direction; the absolute value of the average changing rate of chromatic dispersion in each sign change locality A, each sign change locality A being a range including a sign change position P over which the absolute value of the chromatic dispersion is less than 2 ps/nm/km, is not less than 0.008 ps/nm/km/m and not greater than 4 ps/nm/km/m; the absolute value of the average value of the chromatic dispersion over the whole conduit is not greater than 2 ps/nm/km; the average value of the effective core area over the whole transmission-line is not less than 50 &mgr;m2; the average value of the transmission loss over the whole transmission-line is not greater than 0.25 dB/km; and the average value of the polarization mode dispersion over the whole transmission-line is not greater than 0.2 ps/km/½.
摘要翻译:提供了能够有效抑制四波混频发生的光纤传输线,并且传输损耗小。 光纤传输线10由其单个二氧化硅光纤沿其纵向交替地与波长1550nm的色散为正的部分10a和其中为负的部分10b分散管理。 在传输线的任何一个中继器跨度中,至少有四个符号改变位置P,其中色散的符号在纵向方向上变化; 每个符号改变位置A中的色散的平均变化率的绝对值,每个符号改变位置A是包括色散的绝对值小于2ps / nm / km的符号改变位置P的范围 不小于0.008ps / nm / km / m且不大于4ps / nm / km / m; 整个导管上色散平均值的绝对值不大于2 ps / nm / km; 整个传输线有效核心区域的平均值不小于50 mum2; 整个传输线的传输损耗平均值不大于0.25 dB / km; 并且整个传输线上的偏振模色散的平均值不大于0.2ps / km /½。
摘要:
The present invention concerns a negative-dispersion optical fiber for compensating in a shorter length for chromatic dispersion of a positive-dispersion optical fiber in a signal wavelength band, and an optical transmission line incorporating it. The negative-dispersion optical fiber has the following properties at the wavelength of 1550 nm; chromatic dispersion D of not more than −150 ps/nm/km; a dispersion slope satisfying such a condition that a ratio thereof (S/D) to the chromatic dispersion D is not less than 2.0×10−3/nm nor more than 4.7×1031 3/nm; and an effective area of not less than 12 &mgr;m2 but less than 25 &mgr;m2. For satisfying these properties, the negative-dispersion optical fiber has, in the order stated from the center toward the outer periphery, a core region of a maximum refractive index n1, a first cladding of a refractive index n2 ( n2), and a third cladding of a refractive index n4 (
摘要:
The present invention relates to an optical transmission line and the like having a chromatic dispersion with a small absolute value as a whole within a signal wavelength band including S, C, and L bands. This optical transmission line comprises a single-mode optical fiber and a dispersion-compensating optical fiber which are connected to each other; and has, as characteristics of the whole optical transmission line at a wavelength of 1550 nm, a chromatic dispersion with an absolute value of 4 ps/nm/km or less, and a dispersion slope of −0.015 ps/nm2/km or more but less than 0 ps/nm2/km. Its chromatic dispersion has a maximum value within a wavelength range of 1450 to 1530 nm, and a minimum value within a wavelength range of 1570 to 1620 nm.
摘要:
Proposed are a dispersion compensating fiber and an optical transmission system that can, using a short length of the fiber, compensate the chromatic dispersion and the dispersion slope of a non-zero dispersion shifted fiber whose chromatic dispersion is +2 ps·nm−1·km−1 to +10 ps·nm−1·km−1 and whose dispersion slope is +0.04 ps·nm−2·km−1 to +0.12 ps·nm−2·km−1 at 1550 nm. In the optical transmission system 1, an optical transmission line 30 that consists of a dispersion-shifted fiber 31 and a dispersion compensation fiber 32 is installed between stations 10 and 20. The dispersion compensating fiber 32 has the chromatic dispersion of −250 ps·nm−1·km−1˜−40 ps·nm−1·km−1 and the dispersion slope of 0.015 ps·nm−2·km−1˜0.030 ps·nm−2·km−1 at 1550 nm.
摘要:
The present invention relates to an optical fiber having a structure suitable for long-distance optical communications, and an optical transmission line including the same. The optical fiber in accordance with the present invention comprises a core region extending along a predetermined axis, and a cladding region disposed so as to surround the outer periphery of the core region; and, as characteristics at a wavelength of 1.55 &mgr;m, an effective area of at least 110 &mgr;m2, a dispersion of 18 to 23 ps/nm/km, and a dispersion slope of 0.058 to 0.066 ps/nm2/km.
摘要:
The present invention relates to a dispersion-compensating optical fiber which can transmit, with a low loss, light signals having a high power; and an optical transmission system including the same. This dispersion-compensating optical fiber is insured its single mode at a wavelength of 1.55 &mgr;m, and comprises, about the optical axis, at least a first core having a refractive index n1, a second core having a refractive index n2 (>n1), and a cladding having a refractive index n3 (
摘要:
The present invention provides a line transition and a method for manufacturing the same. The line transition is constructed such that a planar circuit can be arranged in the direction parallel to the propagation direction of electromagnetic waves propagating through a solid waveguide, the coupling characteristics of the solid waveguide with the planar circuit formed on a dielectric substrate are not influenced by the assembly precision of the waveguide and the circuit, and the line transition characteristics are not affected by a variation in manufacturing the dielectric substrate. Notches are formed at the edges of the dielectric substrate in the vicinities of coupled-line pattern segments formed on a dielectric substrate. The notches are formed by punching through holes in a ceramic green sheet serving as a motherboard, firing the motherboard, and cutting the motherboard using dicing lines passing through the through holes.