摘要:
Provided are a semiconductor device and a rechargeable power supply unit which are capable of accurately detecting an overcharge state of a battery even in a case where the battery is charged with a sine wave charger. In a case where a ½ cycle of a charging voltage of the sine wave charger is shorter than a delay time for cancellation of an overdischarge state, when it is detected that a voltage of the battery in the overdischarge state exceeds an overdischarge detection voltage and becomes equal to or higher than an overcharge detection voltage, a delay circuit sets the delay time for cancellation of the overdischarge state to 0 seconds.
摘要:
An object of the present invention is to provide a battery state monitoring circuit and a battery device which are capable of normally operating when a charger (301) is connected to an opposite polarity in error, and then correctly connected. In the case where the charger (301) is connected to the opposite polarity in error and then correctly connected, a logic circuit (305) does not output a power-down signal that powers down the respective circuits to the respective circuits by the aid of a power-down preventing circuit (110). As a result, the battery device normally operates without falling into the power-down state.
摘要:
Provided is a battery state monitoring circuit for manufacturing a battery device at low cost, and a battery device including the same. A charge control transistor and a discharge control transistor are structured so as to be operated based on a low-level signal which is based on a ground voltage (VSS) and a high-level signal which is based on a voltage of a voltage regulator, which is lower than a power supply voltage (VDD) based on a voltage of a battery, respectively. Accordingly, in the charge control transistor and the discharge control transistor, voltages applied to gates thereof become low, whereby a low-breakdown-voltage element can be used. This leads to a reduction in cost for the charge control transistor and the discharge control transistor, leading to a reduction in manufacturing cost for the battery device.
摘要:
Provided is a battery device including, in a charge/discharge protection circuit for controlling charge/discharge of a secondary battery by a single bidirectionally conductive field effect transistor, a charge/discharge control circuit with which the layout area is reduced and a leakage current of the bidirectionally conductive field effect transistor is reduced to perform stable operation. The charge/discharge control circuit includes: a switch circuit for controlling a gate of the bidirectionally conductive field effect transistor based on an output of a control circuit for controlling the charge/discharge of the secondary battery; and two Schottky barrier diodes for preventing back-flow of a charge current and a discharge current. The first Schottky barrier diode has a cathode connected to a drain of the bidirectionally conductive field effect transistor, and the second Schottky barrier diode has a cathode connected to a source of the bidirectionally conductive field effect transistor.
摘要:
A charge and discharge control circuit which accommodates pulsed charge and pulsed discharge and can control charge and discharge of a secondary battery with safety, and a rechargeable power supply device having the same built therein are provided. The charge and discharge control circuit includes a delay time switching circuit for shortening a delay time of overcharge detection after charge inhibition is canceled. When overcharge is detected after the charge inhibition is canceled, the charge is inhibited in a delay time which is shorter than a normal delay time of the overcharge detection.
摘要:
Provided is a charging and discharging protection circuit realizing low current consumption in an overcurrent detection state, easy calculation of an automatic return impedance, and high usability. A pull-down circuit for pulling down an overcurrent detection terminal to a VSS terminal is connected in series between the overcurrent detection terminal and a switching circuit. The switching circuit is connected in series between the pull-down circuit and the VSS terminal.
摘要:
A charge and discharge control circuit which accommodates pulsed charge and pulsed discharge and can control charge and discharge of a secondary battery with safety, and a rechargeable power supply device having the same built therein are provided. The charge and discharge control circuit includes a delay time switching circuit for shortening a delay time of overcharge detection after charge inhibition is canceled. When overcharge is detected after the charge inhibition is canceled, the charge is inhibited in a delay time which is shorter than a normal delay time of the overcharge detection.
摘要:
An overcharge detecting comparator (121) detects an overcharged state of a battery (101), and an overcurrent detecting comparator (120) detects an overcurrent state of the battery (101). In response to output signals from those comparators, a control circuit (210) performs on/off control of each of a switch (102) and a protection circuit (50). In response to an output signal from the control circuit (210), the protection circuit (50) is turned on, to thereby connect a resistor (125) to a path connecting a VSS terminal and an overcurrent detecting terminal, and is turned off, to thereby disconnect the resistor (125) from the path. As a result, even when the battery is in the overcurrent state, current consumption can be reduced.
摘要:
Provided is a battery device including, in a charge/discharge protection circuit for controlling charge/discharge of a secondary battery by a single bidirectionally conductive field effect transistor, a charge/discharge control circuit with which the number of elements to be used is reduced to reduce the layout area. The charge/discharge control circuit includes a switch circuit for controlling a gate of the bidirectionally conductive field effect transistor based on an output of a control circuit for controlling the charge/discharge of the secondary battery, the switch circuit including a first terminal connected to a back gate of the bidirectionally conductive field effect transistor.
摘要:
Provided is a battery device including, in a charge/discharge protection circuit for controlling charge/discharge of a secondary battery by a single bidirectionally conductive field effect transistor, a charge/discharge control circuit with which the number of elements to be used is reduced to reduce the layout area. The charge/discharge control circuit includes a switch circuit for controlling a gate of the bidirectionally conductive field effect transistor based on an output of a control circuit for controlling the charge/discharge of the secondary battery, the switch circuit including a first terminal connected to a back gate of the bidirectionally conductive field effect transistor.