摘要:
Systems and methods for measuring phase dynamics and other properties (e.g. intracranial pressure) are disclosed. For example, the system may generate a reference waveform and a measurement waveform using digital synthesizers, each waveform having an identical constant frequency but also a relative phase shift. Next, system may send a tone-burst, via a transducer, into a sample (e.g. a skull or a bonded material), and then receive a reflected tone-burst in response. Then, a phase difference between the received tone-burst and the measurement waveform may be determined with a linear phase detector. Next, the phase shift of the measurement waveform may be adjusted, by the determined phase difference, such that there is no longer any phase difference between the received tone-burst and the adjusted measurement waveform generated by the appropriate digital synthesizer. A similar adjustment may occur after subsequent tone-bursts, allowing accurate monitoring of continuously variable phase relationships.
摘要:
Systems and methods for measuring phase dynamics and other properties (e.g. intracranial pressure) are disclosed. For example, the system may generate a reference waveform and a measurement waveform using digital synthesizers, each waveform having an identical constant frequency but also a relative phase shift. Next, system may send a tone-burst, via a transducer, into a sample (e.g. a skull or a bonded material), and then receive a reflected tone-burst in response. Then, a phase difference between the received tone-burst and the measurement waveform may be determined with a linear phase detector. Next, the phase shift of the measurement waveform may be adjusted, by the determined phase difference, such that there is no longer any phase difference between the received tone-burst and the adjusted measurement waveform generated by the appropriate digital synthesizer. A similar adjustment may occur after subsequent tone-bursts, allowing accurate monitoring of continuously variable phase relationships.