Highly efficient OLED devices with very short decay times

    公开(公告)号:US11075346B2

    公开(公告)日:2021-07-27

    申请号:US16427388

    申请日:2019-05-31

    摘要: The present invention relates to organic light-emitting devices comprising (a) an anode, (i) a cathode, and (e) an emitting layer between the anode and cathode, comprising 2 to 40% by weight of a luminescent organometallic complex X having a difference of the singlet energy (ES1(X)) and the triplet energy (ET1(X)) of of ≤0.3 eV [Δ(ES1(X))−(ET1(X))≤0.3], 0.05 to 5.0% by weight of a fluorescent emitter Y and 55 to 97.95% by weight of a host compound(s), wherein the amount of the organometallic complex X, the fluorescent emitter Y and the host compound(s) adds up to a total of 100% by weight and the singlet energy of the luminescent organometallic complex X (ES1(X)) is greater than the singlet energy of the fluorescent emitter Y (ES1(Y)) [(ES1(X))>ES1(Y)]. By doping, for example, an emitting layer containing a luminescent organometallic complex having a small S1-T1 splitting, with a fluorescent emitter the emission decay time can significantly be shortened without sacrificing external quantum efficiency (EQE) because of very efficient energy transfer.

    Phenoxasiline based compounds for electronic application

    公开(公告)号:US11031559B2

    公开(公告)日:2021-06-08

    申请号:US16391608

    申请日:2019-04-23

    摘要: Organic electronics applications, especially an organic light-emitting diode (OLED), an organic solar cell (organic photovoltaics) or a switching element such as an organic transistor, for example an organic FET (Field Effect Transistor) and an organic TFT (Thin Film Transistor), comprising at least one substituted phenoxasiline derivative, a organic semiconductor layer, a host material, electron/hole/exciton blocking material or electron/hole injection material comprising at least one substituted phenoxasiline derivative, the use of a substituted phenoxasiline derivative in organic electronics applications, an organic light-emitting diode, wherein at least one substituted phenoxasiline derivative is present in the electron/hole/exciton blocking layer, the electron/hole injection layer and/or the light-emitting layer, a light-emitting layer, an electron/hole/exciton blocking layer and an electron/hole injection layer comprising at least one substituted phenoxasiline derivative and a device selected from the group consisting of stationary visual display units, mobile visual display units; illumination units; keyboards; garments; furniture and wallpaper comprising at least one organic light-emitting diode, at least one light-emitting layer, at least one electron/hole/exciton blocking layer and/or at least one electron/hole injection layer according to the present invention.

    HIGHLY EFFICIENT OLED DEVICES WITH VERY SHORT DECAY TIMES

    公开(公告)号:US20200044165A1

    公开(公告)日:2020-02-06

    申请号:US16427388

    申请日:2019-05-31

    摘要: The present invention relates to organic light-emitting devices comprising (a) an anode, (i) a cathode, and (e) an emitting layer between the anode and cathode, comprising 2 to 40% by weight of a luminescent organometallic complex X having a difference of the singlet energy (ES1(X)) and the triplet energy (ET1(X)) of of ≤0.3 eV [Δ(ES1(X))−(ET1(X))≤0.3], 0.05 to 5.0% by weight of a fluorescent emitter Y and 55 to 97.95% by weight of a host compound(s), wherein the amount of the organometallic complex X, the fluorescent emitter Y and the host compound(s) adds up to a total of 100% by weight and the singlet energy of the luminescent organometallic complex X (ES1(X)) is greater than the singlet energy of the fluorescent emitter Y (ES1(Y)) [(ES1(X))>ES1(Y)]. By doping, for example, an emitting layer containing a luminescent organometallic complex having a small S1-T1 splitting, with a fluorescent emitter the emission decay time can significantly be shortened without sacrificing external quantum efficiency (EQE) because of very efficient energy transfer.