Abstract:
A powderous positive electrode material for lithium ion batteries, comprising crystalline lithium transition metal-based oxide particles having a general formula Li1+a ((Niz (Ni0.5Mn0.5)y Cox)1−k Ak)1−a O2, wherein A is a dopant, −0.030≤a≤0.025, 0.10≤x≤0.40, 0.25≤z≤0.52, x+y+z=1 and k≤0.01, wherein the crystalline powder has a crystallite size less than 33 nm as determined by the Scherrer equation based on the peak of the (104) plane obtained from the X-ray diffraction pattern using a Cu K α radiation source, and wherein the molar ratio MR(Ni) of Ni versus the total transition metal content in a cross section of a particle is higher in the surface area than in the center area of the particle, as determined by EDS analysis.
Abstract:
A crystalline precursor compound for manufacturing a lithium transition metal based oxide powder usable as an active positive electrode material in lithium-ion batteries, the precursor having a general formula Li1−a((Niz(Ni1/2 Mn1/2)yCox)1−k Ak)1+aO2, wherein x+y+z=1, 0.1≤x≤0.4, 0.25≤z≤0.52, A is a dopant, 0≤k≤0.1, and 0.03≤a≤0.35, wherein the precursor has a crystalline size L expressed in nm, with 15≤L≤36. Also a method is described for manufacturing a positive electrode material having a general formula Li1+a′M′1−a−O2, with M′=(Niz(Ni1/2 Mn1/2)yCOx)1−k Ak, wherein x+y+z=1. 0.1≤x≤0.4, 0.25≤z≤0.52, A is a dopant, 0≤k≤0.1, and 0.01≤a′≤0.10, by sintering the lithium deficient precursor powder mixed with either one of LiOH, LiOH.H2O, in an oxidizing atmosphere at a temperature between 800 and 1000° C., for a time between 6 and 36 hrs.
Abstract:
A crystalline precursor compound for manufacturing a lithium transition metal based oxide powder usable as an active positive electrode material in lithium-ion batteries, the precursor having a general formula Li1-a((Niz(Ni0.5Mn0.5)yCox)1-kAk)1+aO2, wherein A comprises at least one element of the group consisting of: Mg, Al, Ca, Si, B, W, Zr, Ti, Nb, Ba, and Sr, with 0.05≤x≤0.40, 0.25≤z≤0.85, x+y+z=1, 0≤k≤0.10, and 0≤a≤0.053, wherein said crystalline precursor powder has a crystalline size L, expressed in nm, with 15≤L≤36.
Abstract:
A crystalline precursor compound for manufacturing a lithium transition metal based oxide powder usable as an active positive electrode material in lithium-ion batteries, the precursor having a general formula Li1−a((Niz(Ni0.5Mn0.5)yCox)1−kAk)1+aO2, wherein A comprises at least one element of the group consisting of: Mg, Al, Ca, Si, B, W, Zr, Ti, Nb, Ba, and Sr, with 0.05≤x≤0.40, 0.25≤z≤0.85, x+y+z=1, 0≤k≤0.10, and 0≤a≤0.053, wherein said crystalline precursor powder has a crystalline size L, expressed in nm, with 15≤L≤36.
Abstract:
A crystalline precursor compound is described for manufacturing a lithium transition metal based oxide powder usable as an active positive electrode material in lithium-ion batteries, the precursor having a general formula Li1−a ((Niz(Ni1/2 Mn1/2)y Cox)1−k Ak)1+a O2, wherein x+y+z=1, 0.1≤x≤0.4, 0.25≤z≤0.55, A is a dopant, 0≤k≤0.1, and 0.04≤a≤0.50, wherein the pre cursor has a crystalline size L expressed in nm, with 77−(67*z)≤L≤97−(67*z). Also a method is described for manufacturing a positive electrode material having a general formula Li1−a′ ((Niz (Ni1/2 Mn1/2)y Ak)1−a′ O2, wherein x+y+z=1, 0.1≤x≤0.4, 0.25≤z≤0.55, A is a dopant, 0≤k≤0.1, and 0.01≤a′≤0.10 by sintering the crystalline precursor compound in an oxidizing atmosphere at a temperature T between 800 and 1000° C., for a time t between 6 and 36 hrs.
Abstract:
A powderous positive electrode material for a lithium secondary battery, the material having the general formula Li1+x[Ni1−a−b−cMaM′bM″c] 1−xO2−z; M being either one or more elements of the group Mn, Zr and Ti, M′ being either one or more elements of the group Al, B and Co, M″ being a dopant different from M and M′, x, a, b and c being expressed in mol with −0.02≦x≦0.02, 0≦c≦0.05, 0.10≦(a+b)≦0.65 and 0≦z≦0.05; and wherein the powderous material is characterized by having a BET value ≦0.37 m2/g, a Dmax
Abstract:
A carbonate precursor compound of a lithium manganese based oxide powder for a positive electrode of a rechargeable battery, the oxide having the general formula Li1+vM1−vO2, wherein −0.03≦v≦0.25, wherein M is a composition comprising at least 50 mol % of manganese, and wherein the carbonate precursor compound has a secondary particle size D50 expressed in μm, and a tap density TD expressed in g/cm3, with either ≦TD≦(2.78*D50)/(D50+7.23) and the compound having a particle size distribution having a span S≦1.8 with S=(D90−D10)/D50; or 1≦TD≦(2.78*D50)/(D50+7.50).
Abstract:
A powderous positive electrode material for a lithium secondary battery has the general formula Li1+x[Ni1−a−b−cMaM′bM″c]1−xO2−z. M is one or more elements of the group Mn, Zr and Ti. M′ is one or more elements of the group Al, B and Co. M″ is a dopant different from M and M′, and x, a, b and c are expressed in mol with −0.02≤x≤0.02, 0≤c≤0.05, 0.10≤(a+b)≤0.65 and 0≤z≤0.05. The material has an unconstrained cumulative volume particle size distribution value (Γ0(D10P=0)), a cumulative volume particle size distribution value after having been pressed at a pressure of 200 MPa (ΓP(D10P=200)) and a cumulative volume particle size distribution value after having been pressed at a pressure of 300 MPa (ΓP(D10P=300)). When ΓP(D10P=200) is compared to Γ0(D10P=0), the relative increase in value is less than 100%. When ΓP(D10P=300) is compared to Γ0(D10P=0), the relative increase in value is less than 120%.
Abstract:
A powderous positive electrode material for a lithium secondary battery has the general formula Li1+x[Ni1−a−b−cMaM′bM″c]1−xO2−z. M is one or more elements of the group Mn, Zr and Ti. M′ is one or more elements of the group Al, B and Co. M″ is a dopant different from M and M′, and x, a, b and c are expressed in mol with −0.02≤x≤0.02, 0≤c≤0.05, 0.10≤(a+b)≤0.65 and 0≤z≤0.05. The material has an unconstrained cumulative volume particle size distribution value (Γ0(D10P=0)), a cumulative volume particle size distribution value after having been pressed at a pressure of 200 MPa (ΓP(D10P=200)) and a cumulative volume particle size distribution value after having been pressed at a pressure of 300 MPa (ΓP(D10P=300)). When ΓP(D10P=200) is compared to Γ0(D10P=0), the relative increase in value is less than 100%. When ΓP(D10P=300) is compared to Γ0(D10P=0), the relative increase in value is less than 120%.
Abstract:
A lithium metal oxide powder for a cathode material in a rechargeable battery, consisting of a core and a surface layer, the surface layer being delimited by an outer and an inner interface, the inner interface being in contact with the core, the core having a layered crystal structure comprising the elements Li, M and oxygen, wherein M has the formula M=(Niz(Ni1/2Mn1/2)yCox)1-kAk, with 0.15≦x≦0.30, 0.20≦z≦0.55, x+y+z=1 and 0