Abstract:
A variable valve timing control apparatus for an internal combustion engine that varies the rotational phrase of the first shaft with respect to the second shaft. The apparatus comprises a housing member rotated in synchronism with one of the first shaft and the second shaft, the housing member having a circular space provided in the housing member and radially extending at least one fan-shaped space from outer circumferential surface of the circular space, a vane rotor rotated in synchronism with the other of the first shaft and the second shaft and accommodated in the housing member in order to relatively rotate with respect to the housing member, the vane rotor having radially extending at least one vane so as to divide the fan-shaped space into first chamber and second chamber. A hole provided in one of the housing member and the vane, an engaging bore provided in the other of the housing member and the vane, and a locking mechanism provided in the hole for fixing the rotational phrase between the housing member and the vane rotor. The locking mechanism comprises a locking member having a leading head provided at the one end of the locking member and a hollow space, the hollow space having an opening which opens in an opposite direction to the leading head, and a stopper member having different diameters.
Abstract:
A valve timing control device includes a drive pulley driven by a crankshaft of an engine, and a driven camshaft. The camshaft has a cam that serves to open and close an intake port. An engine valve is spring-loaded by a valve spring, whereas the cam opens or closes the engine valve against the bias of the spring. Torque is transmittable between the drive pulley and the camshaft, and a rotation angle adjusting mechanism is provided therebetween. The rotation angle adjusting mechanism has a movable operating member being movable in a radial direction.
Abstract:
A drive rotation member is rotated about a given axis by a crankshaft of the engine, and a driven rotation member is rotated about the given axis together with a camshaft of the engine. A relative rotation angle control mechanism is arranged through which the drive and driven rotation members are coaxially connected. The relative rotation angle control mechanism has a movable control member which, when applied with an operation force from an actuation device, varies a relative rotation angle between the drive and driven rotation members. The actuation device comprises a first electromagnetic brake which applies an operation force to the movable control member to cause a rotation of the driven rotation member to be shifted in one of advancing and retarding directions with respect to a rotation of the drive rotation member, and a second electromagnetic brake which applies an operation force to the movable control member to cause the rotation of the driven rotation member to be shifted in the other of the advancing and retarding directions with respect to the rotation of the drive rotation member.
Abstract:
A valve timing control system includes a driving plate, a lever provided to a camshaft, a radial slot formed in the driving plate, an intermediate rotator arranged rotatable with respect to the driving plate and the camshaft and having a spiral slot, and a link having a base end pivotally coupled to the lever and a front end arranged swingably and including a ball engaged with the spiral slot and a block member engaged with the radial slot. The ball has a center of engagement located on a swinging axis of the front end of the link, producing no moment.