Abstract:
An integrated propulsion system according to an example of the present disclosure includes, among other things, components that include a gas turbine engine, a nacelle assembly and a mounting assembly, the system designed by a process comprising identifying two or more of internal structural loading requirements, external structural mount loading requirements, aerodynamic requirements, and acoustic requirements for the system, and interdependently designing said components to meet said requirements. The nacelle assembly includes a fan nacelle and an aft nacelle, the fan nacelle arranged at least partially about a fan and the engine, and the fan nacelle arranged at least partially about a core cowling to define a bypass flow path.
Abstract:
A method of designing an engine according to an exemplary aspect of the present disclosure includes, among other things, designing an engine and a nacelle assembly together in an interactive process, the engine including a turbine section configured to drive a fan section and a compressor section. The step of designing the compressor section includes the step of designing a first compressor and a second compressor, with an overall pressure ratio being greater than or equal to about 35. The step of designing the nacelle assembly includes the step of designing the fan section to include a fan nacelle arranged at least partially about a fan, with the fan section having a fan pressure ratio of less than about 1.7. The step of designing the fan section includes configuring the fan section to deliver a portion of air into the compressor section, and a portion of air into a bypass duct, and with a bypass ratio equal to or greater than about 5.
Abstract:
A fuel injection system for a gas turbine engine includes a fuel delivery conduit, a nozzle block with a nozzle aperture, and a cavity block with a cavity. The nozzle aperture has a first cross sectional area, and injects fuel received from the fuel delivery conduit into the cavity. The cavity has a second cross sectional area that is greater than the first cross sectional area.
Abstract:
A method of designing an engine according to an exemplary aspect of the present disclosure includes, among other things, designing an engine and a nacelle assembly together in an interactive process, the engine including a turbine section that drives a fan section and a compressor section. The step of designing the compressor section includes the step of designing a first compressor and a second compressor, with an overall pressure ratio being greater than or equal to about 35. The step of designing the nacelle assembly includes the step of designing the fan section to include a fan nacelle arranged at least partially about a fan, with the fan section having a fan pressure ratio of less than about 1.7. The step of designing the fan section includes configuring the fan section to deliver a portion of air into the compressor section, and a portion of air into a bypass duct, and with a bypass ratio equal to or greater than about 5.
Abstract:
A method of designing an engine according to an exemplary aspect of the present disclosure includes, among other things, designing an engine and a nacelle assembly together in an interactive process, the engine including a turbine section configured to drive a fan section and a compressor section. The step of designing the compressor section includes the step of designing a first compressor and a second compressor, with an overall pressure ratio being greater than or equal to about 35. The step of designing the nacelle assembly includes the step of designing the fan section to include a fan nacelle arranged at least partially about a fan, with the fan section having a fan pressure ratio of less than about 1.7. The step of designing the fan section includes configuring the fan section to deliver a portion of air into the compressor section, and a portion of air into a bypass duct, and with a bypass ratio equal to or greater than about 5.
Abstract:
A gas turbine engine includes a compressor section having a first portion and an aft portion. A compressor case clearance (CCC) control system is configured to adjust an amount of bleed air delivered to the front portion and the aft portion based on an in-flight phase of an aircraft. In response to invoking a first mode, the CCC control system delivers air to both the front portion and the aft portion. In response to invoking a second mode, the CCC control system reduces the amount of air delivered to the aft portion prior to transitioning from the cruise phase to the descent phase. Accordingly, clearance areas within the compressor section can be selectively increased during specific portions of the flight to avoid contact between blade tips and the engine case.