Abstract:
A method is provided that involves a wall configured to circumscribe and be radially adjacent a rotor. During this method, a tri-axial capacitance probe is provided that includes a tri-axial conduit with an outer conductor member. The tri-axial capacitance probe is configured to output data indicative of a characteristic of the rotor. The tri-axial capacitance probe is configured within a wall aperture in the wall. The outer conductor member is electrically coupled with the wall. The wall is configured as a housing for the tri-axial capacitance probe.
Abstract:
A capacitance probe monitors the distance between a blade tip and a fan, compressor or turbine case. The capacitance probe may be attached to a liner, and may travel with the liner as it radially expands due to thermal changes. The capacitance probe may include a circuit board sensor with a metallic plate, and one or more capacitors. The metallic plate may be encapsulated within an insulating material. A plurality of soft leads may be in electrical communication with the circuit board sensor, allowing a lower lead weight, reduced size and increased flexibility. The soft leads may also be embedded in the liner. In this way, the capacitance probe can record more accurate distance measurements and promote a gas turbine engine's continued and efficient operation.
Abstract:
A capacitance probe monitors the distance between a blade tip and a fan, compressor or turbine case. The capacitance probe may be attached to a liner, and may travel with the liner as it radially expands due to thermal changes. The capacitance probe may include a circuit board sensor with a metallic plate, and one or more capacitors. The metallic plate may be encapsulated within an insulating material. A plurality of soft leads may be in electrical communication with the circuit board sensor, allowing a lower lead weight, reduced size and increased flexibility. The soft leads may also be embedded in the liner. In this way, the capacitance probe can record more accurate distance measurements and promote a gas turbine engine's continued and efficient operation.
Abstract:
A method is provided that involves a wall configured to circumscribe and be radially adjacent a rotor. During this method, a tri-axial capacitance probe is provided that includes a tri-axial conduit with an outer conductor member. The tri-axial capacitance probe is configured to output data indicative of a characteristic of the rotor. The tri-axial capacitance probe is configured within a wall aperture in the wall. The outer conductor member is electrically coupled with the wall. The wall is configured as a housing for the tri-axial capacitance probe.
Abstract:
A hoop support device (202) supports a hoop assembly (100). The hoop assembly comprises a structural hoop (102) and a plurality of wires. The hoop support device comprises a pedestal (206) having a mounting feature (224, 226) for mounting the hoop and a cover (208 pivotally mounted or mountable to the pedestal for rotation about a pivot axis (510). The cover has at least a lateral portion (250, 252) and a peripheral portion (254) for enclosing at least one said wire in an installed/closed condition.