Abstract:
We have discovered a process for hydrocracking a distillate stream and separating it into several product cuts including LPG, light naphtha, heavy naphtha and distillate without a stripper column. Additionally, no more than two heaters relying on external utilities are required for reboiling fractionator bottoms.
Abstract:
An apparatus and process for hydrodesulfurizing hydroprocessed naphtha from an overhead stream of a product fractionation column and/or from an overhead stream of a product stripping column in which an overhead stream may be condensed and fed to a post treat hydrodesulfurization reactor. Hydrogen may be supplied from an upstream separator for separating the hydroprocessed stream. Accordingly, naphtha may be hydrodesulfurized within the hydroprocessing recovery unit.
Abstract:
An apparatus and process for hydrodesulfurizing hydroprocessed naphtha from an overhead stream of a product fractionation column and/or from an overhead stream of a product stripping column in which an overhead stream may be condensed and fed to a post treat hydrodesulfurization reactor. Hydrogen may be supplied from an upstream separator for separating the hydroprocessed stream. Accordingly, naphtha may be hydrodesulfurized within the hydroprocessing recovery unit.
Abstract:
An apparatus and process is disclosed for hydrocracking a hydrocarbon feed in a hydrocracking reactor and hydrocracking a liquid first hydrocracked stream and a recycle oil stream in a second hydrocracking reactor. A vapor first hydrocracked stream and the second hydrocracked stream are fractionated to provide the recycle oil stream.
Abstract:
A process and apparatus are disclosed for recovering hydroprocessing effluent from a hydroprocessing unit utilizing a hot stripping column and a cold stripping column. A light fractionation column fractionates naphtha from kerosene predominantly from a cold stripped stream. A heavy fractionation column fractionates diesel from unconverted oil predominantly present in a hot stripped stream. Only the hot hydroprocessing effluent is heated in a fired heater prior to entering the heavy fractionation column, resulting in substantial operating and capital savings.
Abstract:
A process for oligomerizing olefins to distillate fuels which oligomerizes a recycle olefin stream with a charge olefin stream in a first-stage oligomerization reactor. The first-stage oligomerate is oligomerized in a second-stage oligomerzation reactor to provide a second-stage oligomerate stream. A recycle olefin stream is taken from said second-stage oligomerate stream.
Abstract:
A membrane unit is able to recover hydrogen from a resid waste gas stream. Two membrane units provide even greater hydrogen recovery. The membrane separation is performed at conditions that allow the pressure of the recovered hydrogen to enter into a second stage of compression, saving the expense of the first stage of compression.
Abstract:
A process and apparatus for hydrocracking a hydrocarbon stream that feeds a cold stripped stream and a hot stripped stream to a product fractionation column which may be reboiled. The product fractionation bottoms stream is passed to a heavy fractionation column that may be steam stripped and may be under vacuum.
Abstract:
A hydrotreating reactor including a vessel comprising an upper zone, and intermediate zone and a lower zone. The upper zone comprises at least one upper catalyst bed. The intermediate zone comprises a vapor/liquid separation zone, wherein gas separated within the vapor/liquid separation zone is directed to a high pressure knockout drum and the liquid separated within the vapor/liquid separation zone is directed to a stripping section and then the lower zone. The lower zone comprises at least one lower catalyst bed. Preferably, the stripping section is configured and arranged for removing hydrogen sulfide and ammonia from the gas.
Abstract:
The invention provides processes for the production of hydrocarbons from a biorenewable feedstock blended with a mineral feedstock comprises hydrotreating to remove heteroatoms and saturate olefins. The carbon monoxide is not fed to the downstream hydroisomerization reactor but supplanted with a hydrogen gas with a low concentration of carbon monoxide so as not to poison the hydroisomerization catalyst to improve the cold flow properties for a diesel fuel.