Abstract:
A process is presented for the production of high quality kerosene from lower quality feedstocks, including kerosene produced from coker units, or kerosene from cracking units. The process includes hydrotreating the feedstock to remove contaminants in the feedstock. The hydrotreated process stream is then treated in a trim reactor at higher pressure to reduce the bromine index of the kerosene.
Abstract:
A hydrocracking process is disclosed. The hydrocracking process comprises hydrocracking a hydrocarbon feed stream in a hydrocracking reactor in the presence of a hydrogen stream and a hydrocracking catalyst to produce a hydrocracked effluent stream. The hydrocracked effluent stream is separated in a separator to provide a vapor hydrocracked stream and a liquid hydrocracked stream. The liquid hydrocracked stream is fractionated to provide a naphtha stream, a kerosene stream having a T90 temperature of about 204° C. (399° F.) to about 238° C. (460° F.), a diesel stream having a T90 temperature of about 360° C. (680° F.) to about 383° C. (721° F.) and an unconverted oil stream. The kerosene stream, the unconverted oil stream, and a portion of the diesel stream is recycled to the hydrocracking reactor for hydrocracking.
Abstract:
The process and apparatus of the disclosure utilize a heater between a hydroprocessing reactor and a hydroisomerization reactor. A hydroprocessing feed exchanger cools hydroprocessed effluent to effect turndown of heated hydroprocessed effluent so as to not feed the hydroprocessed effluent to the hydroisomerization reactor at a higher temperature than necessary.
Abstract:
A process is presented for the production of high quality kerosene from lower quality feedstocks, including kerosene produced from coker units, or kerosene from cracking units. The process includes hydrotreating the feedstock to remove contaminants in the feedstock. The hydrotreated process stream is then treated in a trim reactor at higher pressure to reduce the bromine index of the kerosene.