Abstract:
A receptor arrangement for a wind turbine blade, the arrangement comprising a receptor component connectable to a down conductor of a lightning protection system wherein the receptor component is encapsulated by an insulating member. The invention extends to apparatus for lightning protection in a wind turbine blade including such a receptor arrangement connected to a down conductor, and also to a method of assembling lightning protection apparatus for a wind turbine blade.
Abstract:
A wind turbine blade includes a trailing edge flap having a flap part protruding from the trailing edge on the pressure side of the blade. The flap part has a first section and a second section each having an upstream surface arranged to face an oncoming airflow in use. The first section extends from the trailing edge and has a proximal end and a distal end in cross-section. The proximal end is located at or near the trailing edge and the distal end is spaced apart from the trailing edge. The first section is oriented such that an obtuse angle is defined between the upstream surface of the first section and a plane that extends parallel to the local chordal plane and intersects the proximal end of the first section. The second section is oriented such that the upstream surfaces of the first and second sections together define a concave profile in cross section.
Abstract:
A method of making a wind turbine blade component incorporating a lightning protection system, the method comprising: providing a mould surface; arranging a forming element on the mould surface; providing an electrically conductive layer; reinforcing the electrically conductive layer in a predetermined region to create a reinforced zone; arranging the electrically conductive layer over the forming element so that the reinforced zone is superimposed on the forming element; arranging one or more structural components on the electrically conductive layer; consolidating the structural components under vacuum to form a blade shell having an integrated electrically conductive layer adjacent an outer surface of the shell; removing at least part of the forming element from the blade shell to define a recess in the outer surface of the shell so as to expose the reinforced zone of the electrically conductive layer; electrically connecting the electrically conductive layer at the reinforced zones to a respective electrical component located adjacent an inner surface of the blade shell. The invention also extends to a preformed component for use in fabricating a wind turbine blade.
Abstract:
A method of making a wind turbine blade component incorporating a lightning protection system, the method comprising: providing a mould surface; arranging a forming element on the mould surface; providing an electrically conductive layer; reinforcing the electrically conductive layer in a predetermined region to create a reinforced zone; arranging the electrically conductive layer over the forming element so that the reinforced zone is superimposed on the forming element; arranging one or more structural components on the electrically conductive layer; consolidating the structural components under vacuum to form a blade shell having an integrated electrically conductive layer adjacent an outer surface of the shell; removing at least part of the forming element from the blade shell to define a recess in the outer surface of the shell so as to expose the reinforced zone of the electrically conductive layer; electrically connecting the electrically conductive layer at the reinforced zones to a respective electrical component located adjacent an inner surface of the blade shell. The invention also extends to a preformed component for use in fabricating a wind turbine blade.
Abstract:
A receptor arrangement for a wind turbine blade, the arrangement comprising a receptor component connectable to a down conductor of a lightning protection system wherein the receptor component is encapsulated by an insulating member. The invention extends to apparatus for lightning protection in a wind turbine blade including such a receptor arrangement connected to a down conductor, and also to a method of assembling lightning protection apparatus for a wind turbine blade.
Abstract:
A blade tip assembly for a wind turbine blade, comprising a conductive blade tip module, a receptor arrangement spaced from the conductive blade tip module, a coupler that electrically couples the conductive blade tip module to the receptor arrangement and an insulating member that insulates the coupler. The invention also can be expressed as a method for assembling a blade tip assembly for a wind turbine blade, the method comprising providing a blade tip module; providing the blade tip module with a coupler for electrically coupling the blade tip module to a down conductor of a lightning protection system; and encasing the coupler with an insulating member.
Abstract:
A wind turbine blade includes a trailing edge flap having a flap part protruding from the trailing edge on the pressure side of the blade. The flap part has a first section and a second section each having an upstream surface arranged to face an oncoming airflow in use. The first section extends from the trailing edge and has a proximal end and a distal end in cross-section. The proximal end is located at or near the trailing edge and the distal end is spaced apart from the trailing edge. The first section is oriented such that an obtuse angle is defined between the upstream surface of the first section and a plane that extends parallel to the local chordal plane and intersects the proximal end of the first section. The second section is oriented such that the upstream surfaces of the first and second sections together define a concave profile in cross section.
Abstract:
A blade tip assembly for a wind turbine blade, comprising a conductive blade tip module, a receptor arrangement spaced from the conductive blade tip module, a coupler that electrically couples the conductive blade tip module to the receptor arrangement and an insulating member that insulates the coupler. The invention also can be expressed as a method for assembling a blade tip assembly for a wind turbine blade, the method comprising providing a blade tip module; providing the blade tip module with a coupler for electrically coupling the blade tip module to a down conductor of a lightning protection system; and encasing the coupler with an insulating member.
Abstract:
A blade tip assembly for a wind turbine blade, comprising a conductive blade tip module, a receptor arrangement spaced from the conductive blade tip module, a coupler that electrically couples the conductive blade tip module to the receptor arrangement and an insulating member that insulates the coupler. The invention also can be expressed as a method for assembling a blade tip assembly for a wind turbine blade, the method comprising providing a blade tip module; providing the blade tip module with a coupler for electrically coupling the blade tip module to a down conductor of a lightning protection system; and encasing the coupler with an insulating member.
Abstract:
A blade tip assembly for a wind turbine blade, comprising a conductive blade tip module, a receptor arrangement spaced from the conductive blade tip module, a coupler that electrically couples the conductive blade tip module to the receptor arrangement and an insulating member that insulates the coupler. The invention also can be expressed as a method for assembling a blade tip assembly for a wind turbine blade, the method comprising providing a blade tip module; providing the blade tip module with a coupler for electrically coupling the blade tip module to a down conductor of a lightning protection system; and encasing the coupler with an insulating member.