Abstract:
An embodiment of the invention provides a calibration method for an initial discharging curve of a battery. The method includes: acquiring an initial discharging curve of a battery; measuring a first open circuit voltage at a first time point and a second open circuit voltage at a second time point; according to the initial discharging curve, acquiring a first discharge capacity corresponding to the first open circuit voltage and a second discharge capacity corresponding to the second open circuit voltage according to the initial discharging curve; calculating an ideal discharge capacity according to the first discharge capacity and the second discharge capacity; measuring an real discharge capacity between the first time point and the second time point; determining a total discharge capacity difference according to the ideal discharge capacity and the real discharge capacity to calibrate the initial discharging curve to generate a current discharging curve.
Abstract:
An embodiment of the invention provides a rechargeable battery module including a battery bank having serial connected battery units, a charging transistor providing a charging current to the battery bank, a balancing circuit for detecting and balancing voltage values of battery units and battery bank and a control chip. When a first voltage value of a first battery unit reaches a charge-off voltage, the control chip estimates a first unbalanced voltage difference between the first voltage and the minimal voltage among battery units. The control chip disables the charging transistor and estimates a second unbalanced voltage difference between voltages of the first battery unit and the battery unit having a minimal voltage. The control chip enables the balancing circuit to balance the first battery unit. When the voltage of the first battery is dropped by a calibration target, the charging transistor is enabled.
Abstract:
A rechargeable battery module including a plurality of battery cells connected in series, a charging transistor, a balancing circuit and a control chip. The charging transistor is operative to convey a charging current to charge the battery cells. Based on voltage levels of the battery cells, the control chip disables the charging transistor and controls the balancing circuit to perform a first stage battery balance process. After finishing the first stage battery balance process, the control chip enables the charging transistor to charge the battery cells again. After being switched to a constant voltage charging mode, the control chip controls the balancing circuit based on the voltage levels of the battery cells to perform a second stage battery balance process.