Abstract:
The invention relates to a belt and tread drum for manufacturing a package of a belt layer and a tread layer into a cylindrical tire component, wherein the belt and tread drum comprises two support surfaces which are arranged spaced apart in a longitudinal direction of said belt and tread drum and which face away from the drum centre line and are radially movable with respect to the rigid support surface from a retracted position in which the tread support surface is arranged at or near the rigid support surface, to a raised position wherein the tread support surface is arranged in a radially outward position with respect to the rigid support surface, and vice versa, and wherein the tread support surfaces are movable in the substantial longitudinal direction of said drum.
Abstract:
The invention relates to a method for picking up and placing a tire components, wherein the method includes the steps of picking up a supplied first tire component with a transfer drum, rotating the transfer drum in a first direction for winding a predetermined length of the continuous length of the first tire component, rotating the transfer drum in the opposite second direction, while at the same time moving the transfer drum downstream into a cutting position, wherein a part of the predetermined length of the first tire component is unwound from the transfer drum, cutting the unwound part, thereby obtaining a cut-to-length first tire component, and rotating the transfer drum again in the first direction for winding up the unwound part of the cut-to-length first tire component up to the trailing end.
Abstract:
The invention relates to a method and a building drum (1) for manufacturing a package of a belt layer (6) and a tread layer (7) into a substantially cylindrical tire component, wherein the drum is rotatable about a drum centre line (2) and comprises a rigid support surface (3) for the tire component situated at the outward facing circumferential surface of the drum, wherein the drum comprises two support members (4, 5) which are arranged spaced apart in a substantial longitudinal direction of said drum, wherein the support members (4, 5) each comprises a tread support surface (41, 51) which faces away from the drum centre line and which tread support surfaces are radially movable between a retracted position wherein the tread support surface is arranged at or near the rigid support surface, and a raised position wherein the tread support surface is arranged in a radially outward position with respect to the rigid support surface.
Abstract:
Provided is an unloading system and a method for unloading a tire tread carrier, wherein the tire tread carrier includes a plurality of plates, wherein each plate is arranged for supporting at least one tread for a tire, wherein the unloading system includes an arm with a retaining device for picking up and retaining treads, wherein the arm is provided with a lifting device that is arranged to move together with the arm for lifting one of the plates, wherein a control system is arranged for controlling a drive system to position the arm in a starting position in which the lifting device extends at least partially underneath said one plate and to subsequently move the arm upwards such that the lifting device is moved towards a lifting position, thereby lifting said one plate; from the closed position towards the open position.
Abstract:
An apparatus and a method for stitching are provided. The apparatus includes a separator for separating in a separation position the leading end and the trailing end from a working surface to form a separation space, a stitcher unit with a stitcher foot to support the leading end and the trailing end from the separation space and a stitcher head for stitching the leading end and the trailing end on the stitcher foot from outside the separation space, a stitcher drive for driving the stitcher unit, a separator drive for retracting the separator, and a control unit to control the separator drive and the stitcher drive simultaneously such that, during the stitching, the separator is retracted in the stitching direction ahead of the stitcher unit.
Abstract:
The invention relates to a method for picking up and placing a tire components, wherein the method includes the steps of picking up a supplied first tire component with a transfer drum, rotating the transfer drum in a first direction for winding a predetermined length of the continuous length of the first tire component, rotating the transfer drum in the opposite second direction, while at the same time moving the transfer drum downstream into a cutting position, wherein a part of the predetermined length of the first tire component is unwound from the transfer drum, cutting the unwound part, thereby obtaining a cut-to-length first tire component, and rotating the transfer drum again in the first direction for winding up the unwound part of the cut-to-length first tire component up to the trailing end.
Abstract:
Disclosed is a method and an assembly for applying a tire component onto a receiving member. The method includes the steps of: receiving the tire component on the apply member; detecting a plurality of leading endpoints at the leading edge and detecting a plurality of trailing endpoints at the trailing edge in-line with the leading endpoints in the longitudinal direction; determining the distance in the longitudinal direction between the leading endpoint and the trailing endpoint for each pair of endpoints; driving the apply member at an apply speed in a transfer direction to transfer the tire component onto the receiving member while driving the receiving member at a receiving speed; and adjusting the ratio between the apply speed and the receiving speed during the transfer of the tire component in the order in which the pairs of endpoints are spliced to improve the relative positioning of each pair of endpoints for splicing.
Abstract:
The invention relates to a belt and tread drum for manufacturing a package of a belt layer and a tread layer into a cylindrical tire component, wherein the belt and tread drum comprises two support surfaces which are arranged spaced apart in a longitudinal direction of said belt and tread drum and which face away from the drum centre line and are radially movable with respect to the rigid support surface from a retracted position in which the tread support surface is arranged at or near the rigid support surface, to a raised position wherein the tread support surface is arranged in a radially outward position with respect to the rigid support surface, and vice versa, and wherein the tread support surfaces are movable in the substantial longitudinal direction of said drum.
Abstract:
Disclosed is a transfer device and a method for transferring a plurality of first tire components from a first container and a plurality of second tire components from a second container to a servicer, wherein the transfer device includes a first station and a second station for receiving the first container and the second container, respectively, wherein the first station and the second station are arranged side-by-side in a lateral direction, wherein the transfer device further includes a base and a take-out member that is mounted to said base and that is movable with respect to the base towards the first station and the second station for picking-up and taking-out one of the first tire components from the first container at the first station and for picking-up and taking-out one of the second tire components from the second container at the second station, respectively.
Abstract:
Disclosed is a tire building drum having tire components thereon, wherein the tire building drum is provided with a turn-up mechanism for turning-up parts of the tire components, wherein the turn-up mechanism includes a group of arms, wherein each group of arms includes primary arms and secondary arms interposed between the primary arms, wherein, the primary arms and the secondary arms are provided with primary pressing elements and secondary pressing elements, respectively, for exerting a pressing force onto the tire components during the turning-up, wherein the primary pressing elements are in a leading position, wherein the secondary arms are provided with actuators which are arranged for displacing the secondary pressing elements from an axially trailing position with respect to the axial position of the primary pressing elements in the leading position towards the same axial position as the primary pressing elements in the leading position.