Abstract:
Systems and methods of controlling the data rate used to conduct IP telephony communications may make use of historical data network conditions to predict the data rates which can be used for individual new IP telephony communications. Also, the data rates at which IP telephony communications are conducted may be restricted or lowered to avoid causing a user to exceed an allowable data usage budget. Further, when two IP telephony devices are setting up a new IP telephony communication, information about their respective data communication capabilities may be exchanged in setup messaging.
Abstract:
Systems and methods of controlling the data rate used to conduct IP telephony communications may make use of historical data network conditions to predict the data rates which can be used for individual new IP telephony communications. Also, the data rates at which IP telephony communications are conducted may be restricted or lowered to avoid causing a user to exceed an allowable data usage budget. Further, when two IP telephony devices are setting up a new IP telephony communication, information about their respective data communication capabilities may be exchanged in setup messaging.
Abstract:
A communications adaptor comprising an adaptor first port; an adaptor second port; an adaptor third port; and a processor. The adaptor first port is configured to connect to an analog communications line. The adaptor second port is configured to connect to a data network. The adaptor third port is configured to connect to an analog telephony device. The processor is configured to determine that a first call setup request signal has been received at the adaptor first port. The processor is further configured, subsequent to such determination: (1) to transmit a second call setup request signal over the adaptor second port to an Internet Protocol (IP) telephony system over the data network; and (2) to transmit a third call setup request signal over the adaptor third port.