摘要:
Provided herein are methods for evaluating associations between candidate markers and a trait of interest in a plant population. In various embodiments, the plant population is a breeding population, particularly early stage breeding populations. The methods include obtaining a genotypic value for candidate markers and correlating the marker with the trait. Various association models can be used to evaluate the association, and include statistical methods relevant to the structure of plant breeding populations. Population structure may be accounted for in the association models by using Principle Component Analysis. Further provided is a novel statistical approach for association mapping in early stage breeding materials using a transmission disequilibrium based methodology. Markers identified using the methods of the invention can be used in marker assisted breeding and selection, for constructing genetic linkage maps, to identify genes contributing to a trait of interest, and for generating transgenic plants having a desired trait.
摘要:
The presently disclosed subject matter relates to methods and compositions for identifying, selecting, and/or producing drought tolerant maize plants or germplasm. Maize plants or germplasm that have been identified, selected, and/or produced by any of the methods of the presently disclosed subject matter are also provided.
摘要:
Provided herein are methods for evaluating associations between candidate genes and a trait of interest in a population. The methods include a combination of genome-wide association analysis and one or more of nested association mapping (NAM), expression QTL analysis (eQTL), and allele epistastic analysis (AEA). Markers are selected or prioritized if they are shown to be positively-correlated with a trait of interest using GWA and a combination of one or both of NAM and eQTL. Also provided are models for evaluating the association between a candidate marker and a trait in a nested population of organisms. These methods include single marker regression and multiple marker regression models. Markers identified using the methods of the invention can be used in marker assisted breeding and selection, as genetic markers for constructing linkage maps, for gene discovery, for identifying genes contributing to a trait of interest, and for generating transgenic organisms having a desired trait.
摘要:
Provided herein are methods for evaluating associations between candidate genes and a trait of interest in a population. The methods include a combination of genome-wide association analysis and one or more of nested association mapping (NAM), expression QTL analysis (eQTL), and allele epistastic analysis (AEA). Markers are selected or prioritized if they are shown to be positively-correlated with a trait of interest using GWA and a combination of one or both of NAM and eQTL. Also provided are models for evaluating the association between a candidate marker and a trait in a nested population of organisms. These methods include single marker regression and multiple marker regression models. Markers identified using the methods of the invention can be used in marker assisted breeding and selection, as genetic markers for constructing linkage maps, for gene discovery, for identifying genes contributing to a trait of interest, and for generating transgenic organisms having a desired trait.
摘要:
The presently disclosed subject matter relates to methods and compositions for identifying, selecting, and/or producing drought tolerant maize plants or germplasm. Maize plants or germplasm that have been identified, selected, and/or produced by any of the methods of the presently disclosed subject matter are also provided.
摘要:
Methods of identifying a single nucleotide polymorphism associated with a plant trait and methods of identifying a plant having an improved trait. The plant trait is correlated with at least one single nucleotide polymorphism in a microRNA region of a plant genome. Isolated nucleic acids, transgenic plants, and methods of producing the same are also disclosed.
摘要:
Methods of identifying a single nucleotide polymorphism associated with a plant trait and methods of identifying a plant having an improved trait. The plant trait is correlated with at least one single nucleotide polymorphism in a microRNA region of a plant genome. Isolated nucleic acids, transgenic plants, and methods of producing the same are also disclosed.