Abstract:
An apparatus for monitoring a plurality of devices that use a plurality of networks includes a network interface and a processor. The processor is configured to receive, via the network interface, a plurality of packets that were collectively communicated, from the devices, via all of the networks, to aggregate the packets, using at least one field that is included in respective packet headers of the packets, into a plurality of packet aggregations, such that all of the packets in each one of the packet aggregations were collectively communicated from no more than one of the devices, to group the packet aggregations into a plurality of groups, such that there is a one-to-one correspondence between the groups and the devices, in that all of the packets in each of the groups were collectively communicated from a different respective one of the devices, and to generate an output in response thereto.
Abstract:
A monitoring system monitors traffic flows that are exchanged over a communication network. The system characterizes the flows in terms of their temporal traffic features, and uses this characterization to identify communication devices that participate in the same communication session. By identifying the communication devices that serve as endpoints in the same session, the system establishes correlations between the users of these communication devices. The monitoring system characterizes the flows using traffic features such as flow start time, flow end time, inter-burst time and burst size, and/or statistical properties of such features. The system typically generates compressed-form representations (“signatures”) for the traffic flows based on the temporal traffic features, and finds matching flows by finding similarities between signatures.
Abstract:
An apparatus for monitoring a plurality of devices that use a plurality of networks includes a network interface and a processor. The processor is configured to receive, via the network interface, a plurality of packets that were collectively communicated, from the devices, via all of the networks, to aggregate the packets, using at least one field that is included in respective packet headers of the packets, into a plurality of packet aggregations, such that all of the packets in each one of the packet aggregations were collectively communicated from no more than one of the devices, to group the packet aggregations into a plurality of groups, such that there is a one-to-one correspondence between the groups and the devices, in that all of the packets in each of the groups were collectively communicated from a different respective one of the devices, and to generate an output in response thereto.
Abstract:
An apparatus for monitoring a plurality of devices that use a plurality of networks includes a network interface and a processor. The processor is configured to receive, via the network interface, a plurality of packets that were collectively communicated, from the devices, via all of the networks, to aggregate the packets, using at least one field that is included in respective packet headers of the packets, into a plurality of packet aggregations, such that all of the packets in each one of the packet aggregations were collectively communicated from no more than one of the devices, to group the packet aggregations into a plurality of groups, such that there is a one-to-one correspondence between the groups and the devices, in that all of the packets in each of the groups were collectively communicated from a different respective one of the devices, and to generate an output in response thereto.
Abstract:
An apparatus for monitoring a plurality of devices that use a plurality of networks includes a network interface and a processor. The processor is configured to receive, via the network interface, a plurality of packets that were collectively communicated, from the devices, via all of the networks, to aggregate the packets, using at least one field that is included in respective packet headers of the packets, into a plurality of packet aggregations, such that all of the packets in each one of the packet aggregations were collectively communicated from no more than one of the devices, to group the packet aggregations into a plurality of groups, such that there is a one-to-one correspondence between the groups and the devices, in that all of the packets in each of the groups were collectively communicated from a different respective one of the devices, and to generate an output in response thereto.
Abstract:
An apparatus for monitoring a plurality of devices that use a plurality of networks includes a network interface and a processor. The processor is configured to receive, via the network interface, a plurality of packets that were collectively communicated, from the devices, via all of the networks, to aggregate the packets, using at least one field that is included in respective packet headers of the packets, into a plurality of packet aggregations, such that all of the packets in each one of the packet aggregations were collectively communicated from no more than one of the devices, to group the packet aggregations into a plurality of groups, such that there is a one-to-one correspondence between the groups and the devices, in that all of the packets in each of the groups were collectively communicated from a different respective one of the devices, and to generate an output in response thereto.
Abstract:
A monitoring system monitors traffic flows that are exchanged over a communication network. The system characterizes the flows in terms of their temporal traffic features, and uses this characterization to identify communication devices that participate in the same communication session. By identifying the communication devices that serve as endpoints in the same session, the system establishes correlations between the users of these communication devices. The monitoring system characterizes the flows using traffic features such as flow start time, flow end time, inter-burst time and burst size, and/or statistical properties of such features. The system typically generates compressed-form representations (“signatures”) for the traffic flows based on the temporal traffic features, and finds matching flows by finding similarities between signatures.
Abstract:
A monitoring system monitors traffic flows that are exchanged over a communication network. The system characterizes the flows in terms of their temporal traffic features, and uses this characterization to identify communication devices that participate in the same communication session. By identifying the communication devices that serve as endpoints in the same session, the system establishes correlations between the users of these communication devices. The monitoring system characterizes the flows using traffic features such as flow start time, flow end time, inter-burst time and burst size, and/or statistical properties of such features. The system typically generates compressed-form representations (“signatures”) for the traffic flows based on the temporal traffic features, and finds matching flows by finding similarities between signatures.