Abstract:
The present invention provides a method of ameliorating the effects of misalignment between modulator arrays, and a system using the same. The ability reduce the effects of misalignment allows multiple, smaller, more cost effective arrays to be used instead of one large array. This can reduce the manufacturing costs of the array, especially arrays that are produced using semiconductor manufacturing processes such as the digital micromirror device. To avoid visual artifacts caused by the misalignment of two or more modulator arrays 1702, 1704, the individual arrays 1702, 1704 are optically overlapped and a portion of the image 1706 is generated by both arrays 1702, 1704. A breakpoint is chosen between two pixels in the overlapped region 1706 at which to abut the images from each of the modulator arrays 1702, 1704. The breakpoint is changed each row of pixels to minimize the detectability of any visual artifact caused by misalignment between the modulator arrays 1702, 1704.
Abstract:
A method for defect-correction printing. A spatial light modulator that is used to generate the image is mapped for defects. The ON defects are compensated by setting a background level that is equal to the cumulative exposure of the ON defects, and then this background level becomes the threshold for development by the electrophotographic process. The system compensates for OFF defects by allocating the bits and exposures necessary to approximate the OFF defects to operative elements, thereby keeping the cumulative exposure for that pixel in the final printed image exactly, or as closely as possible, equal to the desired exposure. The corrections are contained in a defect correction module (10) that generates the appropriate patterns with the correct allocations to minimize error.
Abstract:
This invention involves approximating a gray scale tone with a more limited range image producer, a process known as screening. This invention reduces the time needed for such screening by discriminating when screening is not needed. In a first embodiment, the rendering process produces a minimally enclosing bounding box surrounding all rendered objects. In an alternative embodiment, scan lines including any part of a rendered object are noted. The screening makes better use of memory by dividing each row of a preference matrix into segments. The lookup tables associated with these segments are sequentially loaded into a memory cache. Input pixels mapping into the loaded segment lookup tables are screened. Then the lookup table associated with the next segment of the preference matrix are loaded into the memory cache and used to screen input pixels mapping into that segment. The method of packs two output pixels into a single data word while multi-level screening even when the preference matrix has an odd row length by alternating consideration of M−1 input pixels and M+1 input pixels, where M is the row length.
Abstract:
This invention is a method and apparatus for interpolation which enables simpler and cost efficient implementation in hardware or software. A function table stores values of the function at addresses corresponding to the argument points where the function is known. The input value enables identification of the function values for arguments immediately below and above the input value. Respective bits of the absolute value of the difference between these two function values enables corresponding gradient value tables. A set of gradient values are stored in these gradient value tables. The least significant bits of the input value, those bits less significant than the arguments of the stored function values, address entries in the enabled gradient value tables. The desired interpolation value is the sum of the first function value and the gradient value recalled from the gradient tables.
Abstract:
A raster image processing system which supports multiple rendering/screening approaches, and selects an optimal approach suited for the specific images to be generated. In an embodiment, images may be rendered using either back-end screening approach or pipelined screening approach. Several variables may be measured to determine which one of the two consumes minimal time for a specific image to be rendered, and the approach consuming minimal time is selected. Typically, back-end screening is selected when multiple overlapping objects are present, and pipelined screening is selected otherwise.
Abstract:
This invention is a screening method. The input image is divided into a plurality of supercells. These supercells are divided into a plurality of individual cells. An expanded cell is defined larger than each of the individual cells. A map of an input gray scale tone to an output gray scale tone is defined for each pixel of the expanded cell. The screening takes place for each pixel of the input image. First the method determines a pixel of the expanded cell corresponding to the input pixel. Then the output gray scale tone corresponding to the pixel of the expanded cell is recalled.
Abstract:
This invention proposes to transcode the compressed image, that may be in the JPEG format for example, to an intermediate format that allows pseudo-random access. Such a pseudo-random access would that allow efficient image transformation. By using this format, in most cases a pixel is decoded only once in the entire image transformation process. This is certainly true for the most common transformation operations such as rotation by 90, 180 and 270 degrees. This transcoding would enable image transformations in printers whose memory is insufficient to store the entire decompressed image.