ADAPTIVE VOTING EXPERTS FOR INCREMENTAL SEGMENTATION OF SEQUENCES WITH PREDICTION IN A VIDEO SURVEILLANCE SYSTEM
    1.
    发明申请
    ADAPTIVE VOTING EXPERTS FOR INCREMENTAL SEGMENTATION OF SEQUENCES WITH PREDICTION IN A VIDEO SURVEILLANCE SYSTEM 有权
    适应性视频监控系统预测序列分段的自适应投票专家

    公开(公告)号:US20110044492A1

    公开(公告)日:2011-02-24

    申请号:US12543379

    申请日:2009-08-18

    IPC分类号: G06K9/00

    CPC分类号: G06K9/00771

    摘要: A sequence layer in a machine-learning engine configured to learn from the observations of a computer vision engine. In one embodiment, the machine-learning engine uses the voting experts to segment adaptive resonance theory (ART) network label sequences for different objects observed in a scene. The sequence layer may be configured to observe the ART label sequences and incrementally build, update, and trim, and reorganize an ngram trie for those label sequences. The sequence layer computes the entropies for the nodes in the ngram trie and determines a sliding window length and vote count parameters. Once determined, the sequence layer may segment newly observed sequences to estimate the primitive events observed in the scene as well as issue alerts for inter-sequence and intra-sequence anomalies.

    摘要翻译: 机器学习引擎中的序列层,被配置为从计算机视觉引擎的观察中学习。 在一个实施例中,机器学习引擎使用投票专家来分割在场景中观察到的不同对象的自适应共振理论(ART)网络标签序列。 序列层可以被配置为观察ART标签序列并且逐渐地构建,更新和修整和重组那些标记序列的ngram特里。 序列层计算ngram trie中节点的熵,并确定滑动窗口长度和投票计数参数。 一旦确定,序列层可以划分新观察到的序列以估计在场景中观察到的原始事件以及发出序列间和序列内异常的警报。

    Inter-trajectory anomaly detection using adaptive voting experts in a video surveillance system
    6.
    发明授权
    Inter-trajectory anomaly detection using adaptive voting experts in a video surveillance system 有权
    视频监控系统中使用自适应投票专家的轨迹间异常检测

    公开(公告)号:US08340352B2

    公开(公告)日:2012-12-25

    申请号:US12543318

    申请日:2009-08-18

    IPC分类号: G06K9/00

    摘要: A sequence layer in a machine-learning engine configured to learn from the observations of a computer vision engine. In one embodiment, the machine-learning engine uses the voting experts to segment adaptive resonance theory (ART) network label sequences for different objects observed in a scene. The sequence layer may be configured to observe the ART label sequences and incrementally build, update, and trim, and reorganize an ngram trie for those label sequences. The sequence layer computes the entropies for the nodes in the ngram trie and determines a sliding window length and vote count parameters. Once determined, the sequence layer may segment newly observed sequences to estimate the primitive events observed in the scene as well as issue alerts for inter-sequence and intra-sequence anomalies.

    摘要翻译: 机器学习引擎中的序列层,被配置为从计算机视觉引擎的观察中学习。 在一个实施例中,机器学习引擎使用投票专家来分割在场景中观察到的不同对象的自适应共振理论(ART)网络标签序列。 序列层可以被配置为观察ART标签序列并且逐渐地构建,更新和修整和重组那些标记序列的ngram特里。 序列层计算ngram trie中节点的熵,并确定滑动窗口长度和投票计数参数。 一旦确定,序列层可以划分新观察到的序列以估计在场景中观察到的原始事件以及发出序列间和序列内异常的警报。

    Adaptive voting experts for incremental segmentation of sequences with prediction in a video surveillance system
    7.
    发明授权
    Adaptive voting experts for incremental segmentation of sequences with prediction in a video surveillance system 有权
    自适应投票专家用于在视频监控系统中预测的序列的增量分割

    公开(公告)号:US08295591B2

    公开(公告)日:2012-10-23

    申请号:US12543379

    申请日:2009-08-18

    IPC分类号: G06K9/00

    CPC分类号: G06K9/00771

    摘要: A sequence layer in a machine-learning engine configured to learn from the observations of a computer vision engine. In one embodiment, the machine-learning engine uses the voting experts to segment adaptive resonance theory (ART) network label sequences for different objects observed in a scene. The sequence layer may be configured to observe the ART label sequences and incrementally build, update, and trim, and reorganize an ngram trie for those label sequences. The sequence layer computes the entropies for the nodes in the ngram trie and determines a sliding window length and vote count parameters. Once determined, the sequence layer may segment newly observed sequences to estimate the primitive events observed in the scene as well as issue alerts for inter-sequence and intra-sequence anomalies.

    摘要翻译: 机器学习引擎中的序列层,被配置为从计算机视觉引擎的观察中学习。 在一个实施例中,机器学习引擎使用投票专家来分割在场景中观察到的不同对象的自适应共振理论(ART)网络标签序列。 序列层可以被配置为观察ART标签序列并且逐渐地构建,更新和修整和重组那些标记序列的ngram特里。 序列层计算ngram trie中节点的熵,并确定滑动窗口长度和投票计数参数。 一旦确定,序列层可以划分新观察到的序列以估计在场景中观察到的原始事件以及发出序列间和序列内异常的警报。

    Intra-trajectory anomaly detection using adaptive voting experts in a video surveillance system
    9.
    发明授权
    Intra-trajectory anomaly detection using adaptive voting experts in a video surveillance system 有权
    视频监控系统中使用自适应投票专家的轨迹内异常检测

    公开(公告)号:US08379085B2

    公开(公告)日:2013-02-19

    申请号:US12543307

    申请日:2009-08-18

    摘要: A sequence layer in a machine-learning engine configured to learn from the observations of a computer vision engine. In one embodiment, the machine-learning engine uses the voting experts to segment adaptive resonance theory (ART) network label sequences for different objects observed in a scene. The sequence layer may be configured to observe the ART label sequences and incrementally build, update, and trim, and reorganize an ngram trie for those label sequences. The sequence layer computes the entropies for the nodes in the ngram trie and determines a sliding window length and vote count parameters. Once determined, the sequence layer may segment newly observed sequences to estimate the primitive events observed in the scene as well as issue alerts for inter-sequence and intra-sequence anomalies.

    摘要翻译: 机器学习引擎中的序列层,被配置为从计算机视觉引擎的观察中学习。 在一个实施例中,机器学习引擎使用投票专家来分割在场景中观察到的不同对象的自适应共振理论(ART)网络标签序列。 序列层可以被配置为观察ART标签序列并且逐渐地构建,更新和修整和重组那些标记序列的ngram特里。 序列层计算ngram trie中节点的熵,并确定滑动窗口长度和投票计数参数。 一旦确定,序列层可以划分新观察到的序列以估计在场景中观察到的原始事件以及发出序列间和序列内异常的警报。