摘要:
A sequence layer in a machine-learning engine configured to learn from the observations of a computer vision engine. In one embodiment, the machine-learning engine uses the voting experts to segment adaptive resonance theory (ART) network label sequences for different objects observed in a scene. The sequence layer may be configured to observe the ART label sequences and incrementally build, update, and trim, and reorganize an ngram trie for those label sequences. The sequence layer computes the entropies for the nodes in the ngram trie and determines a sliding window length and vote count parameters. Once determined, the sequence layer may segment newly observed sequences to estimate the primitive events observed in the scene as well as issue alerts for inter-sequence and intra-sequence anomalies.
摘要:
Embodiments of the present invention provide a method and a system for analyzing and learning behavior based on an acquired stream of video frames. Objects depicted in the stream are determined based on an analysis of the video frames. Each object may have a corresponding search model used to track an object's motion frame-to-frame. Classes of the objects are determined and semantic representations of the objects are generated. The semantic representations are used to determine objects' behaviors and to learn about behaviors occurring in an environment depicted by the acquired video streams. This way, the system learns rapidly and in real-time normal and abnormal behaviors for any environment by analyzing movements or activities or absence of such in the environment and identifies and predicts abnormal and suspicious behavior based on what has been learned.
摘要:
Techniques are disclosed for visually conveying classifications derived from pixel-level micro-features extracted from image data. The image data may include an input stream of video frames depicting one or more foreground objects. The classifications represent information learned by a video surveillance system. A request may be received to view a classification. A visual representation of the classification may be generated. A user interface may be configured to display the visual representation of the classification and to allow a user to view and/or modify properties associated with the classification.
摘要:
Embodiments of the present invention provide a method and a system for analyzing and learning behavior based on an acquired stream of video frames. Objects depicted in the stream are determined based on an analysis of the video frames. Each object may have a corresponding search model used to track an object's motion frame-to-frame. Classes of the objects are determined and semantic representations of the objects are generated. The semantic representations are used to determine objects' behaviors and to learn about behaviors occurring in an environment depicted by the acquired video streams. This way, the system learns rapidly and in real-time normal and abnormal behaviors for any environment by analyzing movements or activities or absence of such in the environment and identifies and predicts abnormal and suspicious behavior based on what has been learned.
摘要:
Techniques are disclosed for visually conveying a sequence storing an ordered string of symbols generated from kinematic data derived from analyzing an input stream of video frames depicting one or more foreground objects. The sequence may represent information learned by a video surveillance system. A request may be received to view the sequence or a segment partitioned form the sequence. A visual representation of the segment may be generated and superimposed over a background image associated with the scene. A user interface may be configured to display the visual representation of the sequence or segment and to allow a user to view and/or modify properties associated with the sequence or segment.
摘要:
A sequence layer in a machine-learning engine configured to learn from the observations of a computer vision engine. In one embodiment, the machine-learning engine uses the voting experts to segment adaptive resonance theory (ART) network label sequences for different objects observed in a scene. The sequence layer may be configured to observe the ART label sequences and incrementally build, update, and trim, and reorganize an ngram trie for those label sequences. The sequence layer computes the entropies for the nodes in the ngram trie and determines a sliding window length and vote count parameters. Once determined, the sequence layer may segment newly observed sequences to estimate the primitive events observed in the scene as well as issue alerts for inter-sequence and intra-sequence anomalies.
摘要:
A sequence layer in a machine-learning engine configured to learn from the observations of a computer vision engine. In one embodiment, the machine-learning engine uses the voting experts to segment adaptive resonance theory (ART) network label sequences for different objects observed in a scene. The sequence layer may be configured to observe the ART label sequences and incrementally build, update, and trim, and reorganize an ngram trie for those label sequences. The sequence layer computes the entropies for the nodes in the ngram trie and determines a sliding window length and vote count parameters. Once determined, the sequence layer may segment newly observed sequences to estimate the primitive events observed in the scene as well as issue alerts for inter-sequence and intra-sequence anomalies.
摘要:
Techniques are disclosed for visually conveying a sequence storing an ordered string of symbols generated from kinematic data derived from analyzing an input stream of video frames depicting one or more foreground objects. The sequence may represent information learned by a video surveillance system. A request may be received to view the sequence or a segment partitioned form the sequence. A visual representation of the segment may be generated and superimposed over a background image associated with the scene. A user interface may be configured to display the visual representation of the sequence or segment and to allow a user to view and/or modify properties associated with the sequence or segment.
摘要:
A sequence layer in a machine-learning engine configured to learn from the observations of a computer vision engine. In one embodiment, the machine-learning engine uses the voting experts to segment adaptive resonance theory (ART) network label sequences for different objects observed in a scene. The sequence layer may be configured to observe the ART label sequences and incrementally build, update, and trim, and reorganize an ngram trie for those label sequences. The sequence layer computes the entropies for the nodes in the ngram trie and determines a sliding window length and vote count parameters. Once determined, the sequence layer may segment newly observed sequences to estimate the primitive events observed in the scene as well as issue alerts for inter-sequence and intra-sequence anomalies.
摘要:
Techniques are disclosed for visually conveying classifications derived from pixel-level micro-features extracted from image data. The image data may include an input stream of video frames depicting one or more foreground objects. The classifications represent information learned by a video surveillance system. A request may be received to view a classification. A visual representation of the classification may be generated. A user interface may be configured to display the visual representation of the classification and to allow a user to view and/or modify properties associated with the classification.