Abstract:
A magnetic write apparatus has a media-facing surface (MFS) and includes an auxiliary pole, coil(s) and a main pole having a pole tip and a yoke. The pole tip occupies part of the MFS. The yoke has a yoke length measured from the MFS in a yoke direction perpendicular to the MFS. The yoke length is less than four microns. The main pole has a total length in the yoke direction and a width in a cross-track direction. The main pole is continuous along the total length. The aspect ratio of the main pole is the total length divided by the width and exceeds one. The main pole includes surface(s) having a nonzero acute flare angle from the MFS. The auxiliary pole is adjacent to the main pole and recessed from the MFS by not more than 1.05 micron. The coil(s) energizes the main pole and have not more than two turns.
Abstract:
A method provides a magnetic device having an air-bearing surface (ABS) location. A layer including first and second sublayers is provided. The first sublayer includes the ABS location. The second sublayer recessed from the ABS location such that part of the first sublayer is between the second sublayer and the ABS location. The first sublayer has a rear surface oriented at a nonzero, acute angle from a surface perpendicular to the ABS location. A trench is formed in the layer. The trench has a bottom, a top and sidewalls. The sidewalls form a first angle with a direction perpendicular to the bottom at the ABS location. The sidewalls form a second angle with the direction in part of the second sublayer. The second angle is smaller than the first angle. The sidewall angle varies along the rear surface of the first sublayer. A main pole is provided in the trench.
Abstract:
A magnetic write apparatus has a media-facing surface (MFS) and includes an auxiliary pole, coil(s) and a main pole having a pole tip and a yoke. The pole tip occupies part of the MFS. The yoke has a yoke length measured from the MFS in a yoke direction perpendicular to the MFS. The yoke length is less than four microns. The main pole has a total length in the yoke direction and a width in a cross-track direction. The main pole is continuous along the total length. The aspect ratio of the main pole is the total length divided by the width and exceeds one. The main pole includes surface(s) having a nonzero acute flare angle from the MFS. The auxiliary pole is adjacent to the main pole and recessed from the MFS by not more than 1.05 micron. The coil(s) energizes the main pole and have not more than two turns.
Abstract:
A method provides a magnetic transducer having a media-facing surface (MFS). The method includes providing a pole, providing a side gap, providing coil(s) for energizing the pole and providing side shield(s). A portion of the pole resides at the MFS. The side gap is between the pole and the side shield(s). The side shield(s) have a gradient in a saturation magnetization such that the saturation magnetization increases in a yoke direction perpendicular to the MFS. The step of providing the side shield(s) further includes providing a nonmagnetic structure having a side surface parallel to the MFS and providing at least one side shield layer. A portion of the side shield layer(s) are on the side surface. The portion of the side shield layer(s) has the gradient in the saturation magnetization. At least part of the side shield being formed by the portion of the side shield layer(s).