Abstract:
A photoemitter of improved quantum efficiency is formed by smoke or low density deposition of photoemissive materials on a substrate. Significantly, the photoemissive layer is deposited in the presence of a low pressure gas to form a layer whose density is not greater than 20% and preferably not greater than 5% of the photoemissive material in its bulk form. Individual particle size is controlled and deposited particles are isolated, affording greater surface contact area with the subsequently deposited constituent materials of the photoemissive surface, thereby enhancing interaction and increasing the photoelectron emission. The low density, randomly oriented smoke deposits provide a photosensitive surface characterized by high absorption, low reflective losses, and low transmissive losses. The spectral response curve of smoke photoemitters peaks further into the red or near infrared region than prior art devices, rendering the smoke photoemitters of the invention ideally suited for use as near infrared sensors in low light level imaging system.