Abstract:
Among various examples, one is directed to identifying one or more particular photocathode semiconductor structures via a computer-based method. The method includes calculating, for each of a plurality of semiconductor materials and via a database characterizing electronic band structures of respective semiconductor materials corresponding to the plurality of semiconductor materials, an intrinsic emittance score (e.g., using an optimistic selection of a work function) as a predictive screening metric for whether the semiconductor material may exhibit low intrinsic emittance. A subset of the semiconductor materials may be selected, wherein each of the semiconductor materials in the subset satisfies screening criteria based on the intrinsic emittance score, and photocathode brightness properties of said one or more of the semiconductor materials in the subset are characterized, thereby identifying certain semiconductor materials in the subset of the semiconductor materials with desirable photocathode brightness properties.
Abstract:
A photocathode assembly of a vacuum photoelectronic device with a semi-transparent photocathode that consists of an input window in the form of a disk made from sapphire, layers of heteroepitaxial structure of gallium nitride compounds as a semi-transparent photocathode grown on the inner surface of the input window, and an element for connecting the input window with a vacuum photoelectronic device housing, which is vacuum-tight fixed on the outer surface of the input window at its periphery. The element for connecting of the input window with the vacuum photoelectronic device housing is made of a bimetal, in which a layer that is not in contact with the outer surface of the input window consists of a material with a temperature coefficient of linear expansion that differs from the temperature coefficient of linear expansion of sapphire by no more than 10% in the temperature range from 20° C. to 200° C.
Abstract:
Provided are a field emission device and a method of manufacturing the same. The field emission device includes an anode electrode and a cathode electrode which are opposite to each other, a counter layer provided on the anode electrode, and a field emitter provided on the cathode electrode and facing the counter layer. Herein, the field emitter includes a carbon nanotube emitting cold electrons and a photoelectric material emitting photo electrons.
Abstract:
A method of forming a field emitter comprises disposing a first layer on a substrate. The first layer is seeded with nanodiamond particles. The substrate with the first layer disposed thereon is maintained at a first temperature and a first pressure in a mixture of gases which includes nitrogen. The first layer is exposed to a microwave plasma to form a nitrogen doped ultrananocrystalline diamond film on the first layer, which has a percentage of nitrogen in the range of about 0.05 atom % to about 0.5 atom %. The field emitter has about 1012 to about 1014 emitting sites per cm2. A photocathode can also be formed similarly by forming a nitrogen doped ultrananocrystalline diamond film on a substrate similar to the field emitter, and then hydrogen terminating the film. The photocathode is responsive to near ultraviolet light as well as to visible light.
Abstract:
Exemplary embodiments are disclosed of anti-reflective nanoporous silicon for efficient hydrogen production by photoelectrolysis of water. A nanoporous black Si is disclosed as an efficient photocathode for H2 production from water splitting half-reaction.
Abstract:
A spin-polarized electron generating device includes a substrate, a buffer layer, a strained superlattice layer formed on the buffer layer, and an intermediate layer formed of a crystal having a lattice constant greater than a lattice constant of a crystal of the buffer layer, the intermediate layer intervening between the substrate and the buffer layer. The buffer layer includes cracks formed in a direction perpendicular to the substrate by tensile strain.
Abstract:
A device for the high-speed analysis of photon- or particle-generated image data or for the high-speed energy-discrimination analysis of photon- or particle-counting data. A sensor collects the photons or particles on an array of solid state detectors, as electrical analog signals, and stores the analog-signal information on capacitors of readout arrays associated with the detector arrays. Image-related signals are transferred to integrated circuit chips containing an array of correction processor unit cells. Corrected signals are transferred to an analog image processor. Particle-counting data is transferred directly from the readout array chips to the analog image processor having circuitry for implementing an image processing or energy discrimination algorithm.
Abstract:
A photocathode having a UV glass substrate and a laminate composed of a SiO2 layer, a GaAlN layer, a Group III-V nitride semiconductor layer and an AlN buffer layer provided on the UV glass substrate in succession. The UV glass substrate, which absorbs infrared rays, can be heat treated at a high speed by photoheating. Further, the UV glass substrate, which is transparent to ultraviolet rays, permits ultraviolet rays to be introduced into the Group III-V nitride semiconductor layer where photoelectric conversion occurs.
Abstract:
A night vision device includes an image intensifier tube having a photocathode responsive to light in the wavelength range extending from about 1 .mu.m to about 2 .mu.m. The photocathode releases photoelectrons in response to photons of light in this wavelength range. A photomultiplier tube includes such a photocathode to provide an image in response to light of such a wavelength. A method of making such a photocathode is set out.
Abstract:
A novel photocathode and image intensifier tube include an active layer comprised substantially of amorphic diamond-like carbon, diamond, or a combination of both. The photocathode has a face plate coupled to an active layer. The active layer is operable to emit electrons in response to photons striking the face plate.