Abstract:
An ice maker is provided that includes a tray having recesses that can include ice-phobic surfaces. The ice-phobic surfaces may include ice-phobic coatings, textured metal surfaces, hydrophobic coatings or other surfaces configured to repel water and ice. The tray can be formed from metal material and may exhibit a fatigue limit greater than about 150 Megapascals (MPa) at 105 cycles. The ice maker further includes a frame body coupled to the tray, and a driving body that is rotatably coupled to the tray. The driving body is further adapted to rotate the tray in a clockwise and/or counter-clockwise cycle such that the tray presses against the frame body in a manner that flexes the tray to dislodge ice pieces formed in the recesses of the tray.
Abstract:
An ice making module includes a conductive ice tray having a bottom surface and a barrier coating on at least a portion of the conductive ice tray. An electrical circuit in electrical communication with the conductive ice tray includes a power source and a capacitor. A switch is configured to move between a charging position, wherein the capacitor stores an electrical charge, and a pulse position, wherein the capacitor releases the electrical charge. A conductive material disposed proximate the conductive ice tray is in selective electromagnetic communication with the conductive ice tray. The electrical charge released by the capacitor generates an induced electrical current through the conductive material and a repelling electromagnetic force between the conductive ice tray and the conductive material. A water dispensing mechanism disposes water into the conductive ice tray. A cooling apparatus decrease the temperature of the water in the conductive ice tray.
Abstract:
An ice making module for an appliance includes a conductive ice tray having an ice forming cavity. An electrical circuit is in electrical communication with the conductive ice tray and includes a power source in electrical communication with the conductive ice tray and a switch. The switch releases an electromagnetic pulse through the conductive ice tray. A water dispensing mechanism disposes water into the ice forming cavity and a cooling apparatus cools the water to form at least one ice piece that is in electromagnetic communication with the conductive ice tray. The electromagnetic pulse released through the conductive ice tray generates an induced electrical current through the ice piece and a repelling electromagnetic force between the conductive ice tray and the ice piece, wherein the repelling force biases the ice piece away from the conductive ice tray, thereby ejecting the ice piece from the ice forming cavity.
Abstract:
An ice maker is provided that includes a tray having recesses that can include ice-phobic surfaces. The ice-phobic surfaces may include ice-phobic coatings, textured metal surfaces, hydrophobic coatings or other surfaces configured to repel water and ice. The tray can be formed from metal material and may exhibit a fatigue limit greater than about 150 Megapascals (MPa) at 105 cycles. The ice maker further includes a frame body coupled to the tray, and a driving body that is rotatably coupled to the tray. The driving body is further adapted to rotate the tray in a clockwise and/or counter-clockwise cycle such that the tray presses against the frame body in a manner that flexes the tray to dislodge ice pieces formed in the recesses of the tray.
Abstract:
An ice making module includes a conductive ice tray having a bottom surface and a barrier coating on at least a portion of the conductive ice tray. An electrical circuit in electrical communication with the conductive ice tray includes a power source and a capacitor. A switch is configured to move between a charging position, wherein the capacitor stores an electrical charge, and a pulse position, wherein the capacitor releases the electrical charge. A conductive material disposed proximate the conductive ice tray is in selective electromagnetic communication with the conductive ice tray. The electrical charge released by the capacitor generates an induced electrical current through the conductive material and a repelling electromagnetic force between the conductive ice tray and the conductive material. A water dispensing mechanism disposes water into the conductive ice tray. A cooling apparatus decrease the temperature of the water in the conductive ice tray.
Abstract:
An ice making module for an appliance includes a conductive ice tray having an ice forming cavity. An electrical circuit is in electrical communication with the conductive ice tray and includes a power source in electrical communication with the conductive ice tray and a switch. The switch releases an electromagnetic pulse through the conductive ice tray. A water dispensing mechanism disposes water into the ice forming cavity and a cooling apparatus cools the water to form at least one ice piece that is in electromagnetic communication with the conductive ice tray. The electromagnetic pulse released through the conductive ice tray generates an induced electrical current through the ice piece and a repelling electromagnetic force between the conductive ice tray and the ice piece, wherein the repelling force biases the ice piece away from the conductive ice tray, thereby ejecting the ice piece from the ice forming cavity.
Abstract:
An ice making module for an appliance includes a conductive ice tray having an ice forming cavity. An electrical circuit is in electrical communication with the conductive ice tray and includes a power source in electrical communication with the conductive ice tray and a switch. The switch releases an electromagnetic pulse through the conductive ice tray. A water dispensing mechanism disposes water into the ice forming cavity and a cooling apparatus cools the water to form at least one ice piece that is in electromagnetic communication with the conductive ice tray. The electromagnetic pulse released through the conductive ice tray generates an induced electrical current through the ice piece and a repelling electromagnetic force between the conductive ice tray and the ice piece, wherein the repelling force biases the ice piece away from the conductive ice tray, thereby ejecting the ice piece from the ice forming cavity.
Abstract:
An ice maker assembly is provided that includes a tray having a plurality of ice-phobic recesses. The recesses may possess a total water volume of 70 cc or greater. The tray comprises metal material and can be formed with a substantially uniform strain distribution. The ice maker further includes a frame body coupled to the tray, a driving body that is rotatably coupled to the ice-forming tray, and a processor that is operatively coupled to the driving body. The processor controls the driving body to rotate the tray in a manner that flexes the tray to dislodge ice pieces formed in the recesses.
Abstract:
An ice maker is provided that includes a tray having recesses that can include ice-phobic surfaces. The ice-phobic surfaces may include ice-phobic coatings, textured metal surfaces, hydrophobic coatings or other surfaces configured to repel water and ice. The tray can be formed from metal material and may exhibit a fatigue limit greater than about 150 Megapascals (MPa) at 105 cycles. The ice maker further includes a frame body coupled to the tray, and a driving body that is rotatably coupled to the tray. The driving body is further adapted to rotate the tray in a clockwise and/or counter-clockwise cycle such that the tray presses against the frame body in a manner that flexes the tray to dislodge ice pieces formed in the recesses of the tray.
Abstract:
An ice making module for an appliance includes a conductive ice tray having an ice forming cavity. An electrical circuit is in electrical communication with the conductive ice tray and includes a power source in electrical communication with the conductive ice tray and a switch. The switch releases an electromagnetic pulse through the conductive ice tray. A water dispensing mechanism disposes water into the ice forming cavity and a cooling apparatus cools the water to form at least one ice piece that is in electromagnetic communication with the conductive ice tray. The electromagnetic pulse released through the conductive ice tray generates an induced electrical current through the ice piece and a repelling electromagnetic force between the conductive ice tray and the ice piece, wherein the repelling force biases the ice piece away from the conductive ice tray, thereby ejecting the ice piece from the ice forming cavity.