Abstract:
A blending appliance includes a housing with a jar receiving area defined between an upper housing and a support base. A blender jar includes a base portion and a receptacle portion, and is configured to be laterally received within the jar receiving area of the housing. A magnetic coupling system includes an upper magnetic coupler disposed in the base portion of the blender jar and a lower magnetic coupler disposed in the support base of the housing. The upper and lower magnetic couplers are magnetically coupled to one another for driving a blade assembly disposed in the receptacle portion of the blender jar. A brake mechanism is disposed on the upper magnetic coupler and is configured to stop rotation of the upper magnetic coupler when the blender jar is removed from the jar receiving area.
Abstract:
A food processing device includes a dicing kit adapted to be received in a bowl which is coupled to a base. The dicing kit includes a dicing grid disposed within a frame which is coupled to a cover member having a rotating slicing tool disposed there between. The slicing tool is positively captured between the dicing grid frame and the cover member and is further adapted to rotate as powered by a motor disposed in the base portion of the food processor.
Abstract:
A food processing device includes a dicing kit adapted to be received in a bowl which is coupled to a base. The dicing kit includes a dicing grid disposed within a frame which is coupled to a cover member having a rotating slicing tool disposed there between. The slicing tool is positively captured between the dicing grid frame and the cover member and is further adapted to rotate as powered by a motor disposed in the base portion of the food processor.
Abstract:
A blending appliance includes a housing with a jar receiving area defined between an upper housing and a support base. A blender jar includes a base portion and a receptacle portion, and is configured to be laterally received within the jar receiving area of the housing. A magnetic coupling system includes an upper magnetic coupler disposed in the base portion of the blender jar and a lower magnetic coupler disposed in the support base of the housing. The upper and lower magnetic couplers are magnetically coupled to one another for driving a blade assembly disposed in the receptacle portion of the blender jar. A brake mechanism is disposed on the upper magnetic coupler and is configured to stop rotation of the upper magnetic coupler when the blender jar is removed from the jar receiving area.
Abstract:
A food processor attachment assembly for a stand mixer includes a coupling hub adapted to be received in an attachment hub of the stand mixer. A gear housing includes a gearing mechanism disposed therein to translate an output drive from the attachment hub to the coupling hub to drive an output shaft along a vertical rotational axis. The output drive is accessible at a coupling portion for attaching to various food processing discs as housed within a top housing assembly. The output drive is further accessible for coupling to the food processing attachment at a lower coupling portion for powering food processing attachments within a bowl assembly.
Abstract:
A juicing system with a drive mechanism and a juicer assembly, where the juicer assembly includes a main housing defining a cavity. A lid encloses a top portion of the cavity and has an opening therethrough. An auger is disposed within the cavity and has a top portion and a bottom portion. The auger is operably connected at one of the top portion or the bottom portion to the drive mechanism to rotate the auger. A rotatable cutting blade is disposed at the top portion of the auger. The rotatable cutting blade cuts foods inserted into the cavity through the opening. A juicing basket is disposed within the cavity, radially outwardly from the auger. The juicing basket has at least one screen with apertures therethrough of varying sizes. Food is pressed by the auger against the juicing basket to squeeze juice and pulp through the apertures.