Abstract:
A metal heat exchanger tube having integral fins formed on the tube outside and having a fin foot, fin flanks and a fin tip. The fin foot protrudes radially from the tube wall, and a channel is formed between the fins. Spaced-apart additional structures are arranged in a channel base and divide the channel between the fins into segments. The additional structures reduce the throughflow area in the channel and limit fluid flow during operation. First additional structures are radial projections emerging from the channel base and are delimited radially by an end surface located between the channel base and the fin tip. Material protrusions in the form of second additional structures lie at the location of the projections. The material protrusions are arranged between the end surface and the fin tip and lie laterally on the fin flank, and extend further axially and radially than circumferentially.
Abstract:
The invention relates to a heat exchanger tube having a tube longitudinal axis, wherein fins extend continuously from the tube wall on the tube outer face and/or the tube inner face, or extend axially parallel thereto or in the form of a helix. Continuously extending primary grooves are formed between adjacent fins, said fins have at least one structured area on the tube outer face and/or tube inner face, and the structured area has a plurality of projections of a projection height projecting from the surface, the projections being separated by notches. According to the invention, a plurality of projections are deformed relative one another in pairs to such an extent that cavities are formed between adjacent projections. Furthermore, according to the invention, a plurality of projections are deformed in the direction of the tube wall such that cavities are formed between a respective projection and the tube wall.
Abstract:
A heat exchanger tube with a tube axis, a tube wall, a tube outside and a tube inside. Continuously running, axially parallel or helically circling inner ribs are formed out of the tube wall on the tube inside, each inner rib having two rib flanks and a rib tip. A continuously extending groove is formed between adjacent inner ribs. The rib tip has at regular intervals recurring elevations which have an essentially frustopyramidal form. The inner ribs are raised in the radial direction on the contour line which is defined by the transitional edge of a rib flank to the rib tip and protuberances advancing out of the rib flank are formed in this region. Furthermore, the invention relates to a method for producing a heat exchanger tube.
Abstract:
A metal heat exchanger tube having integral fins formed on the tube outside. The fins have a fin foot, fin flanks and a fin tip, and the fin foot protrudes radially from the tube wall. The tube includes a channel with a channel base and spaced-apart additional structures dividing the channel between the fins into segments and limiting fluid flow in the channel during operation. First additional structures are radially outwardly directed projections each with an end surface located between the channel base and the fin tip. Cavities in the form of second additional structures are disposed at the location of the projections between an end surface and the fin tip such that the cavities lie laterally on the fin flank and are open in the axial direction.
Abstract:
A metal heat exchanger tube for the evaporation of liquids on the outside of the tube, having a tube axis, a tube wall, and integrally formed ribs that run circumferentially on the outside of the tube. The ribs have a rib foot, rib flanks, and a rib tip, wherein the rib foot projects substantially radially from the tube wall. A respective groove is located between every two ribs that are adjacent to one another in the axial direction. At least first, second, and third lateral material projections, which are formed from the material of the ribs, are arranged on a first, second, and third level on the rib flanks in such a way that the grooves are largely covered by all of the material projections. The first, second, and third lateral material projections are formed on levels that are in each case differently spaced apart from the tube wall in the radial direction.
Abstract:
The invention relates to a metal heat exchanger tube, comprising integral ribs formed on the outside of the tube. Said ribs have a rib base, rib flanks, and a rib tip. The rib base protrudes substantially radially from the tube wall. A channel is formed between the ribs, in which channel additional structures spaced apart from each other are arranged. The additional structures divide the channel between the ribs into segments. The additional structures reduce the cross-sectional area in the channel between two ribs through which flow is possible by at least 60% locally and, at least thereby, limit a fluid flow in the channel during operation.