摘要:
A touch sensor includes a first substrate, a second substrate, an inducing electrode and an inducing switch. The second substrate is disposed opposite the first substrate. The inducing electrode is disposed on the first substrate. The inducing switch disposed on the second substrate includes a first switch electrode, a second switch electrode and an active layer, which is disposed between and contacts with the first switch electrode and the second switch electrode. The active layer and the inducing electrode face each other and are separated by a distance. When the first substrate or the second substrate is pressed so that the distance between the inducing electrode and the active layer is changed, the driven inducing electrode induces a channel, corresponding to a change of the distance, on the active layer to electrically connect the first switch electrode to the second switch electrode.
摘要:
A sensing circuit for a touch panel is disclosed. The sensing circuit includes a switching device, a passive device and a sensing device. The switching device receives an input signal and outputs the input signal according to a control signal. The passive device couples to the switching device. The sensing device couples to the switching device to form a node, receives the input signal to generate a reference voltage on the node, and changes the value of the reference voltage to generate a target voltage according to a touching pressure on a preset position on the touch panel from a user.
摘要:
A flat display structure includes a substrate, a pixel array, a first-stage shift register and a second-stage shift register. The substrate includes a signal line. The pixel array is disposed on the substrate. The first-stage shift register is disposed at a first side of the pixel array and coupled to the signal line for outputting a first-stage scan signal to the pixel array according to trigger of a first start pulse. The second-stage shift register is disposed at a second side of the pixel array and coupled to the signal line for receiving a second start pulse via the signal line.
摘要:
An organic light emitting diode (OLED) pixel circuit includes a driving node, a pixel driving unit, an electroluminescent device, and a compensation unit. The pixel driving unit is coupled to a data line receiving a data voltage and provides a driving voltage to the driving node. The display electroluminescent device is coupled to the driving node for illuminating in response to the driving voltage, wherein the level of the driving voltage is related to an aging factor voltage, corresponding to a usage time of the display electroluminescent device. The compensation unit, including a compensation electroluminescent device, is couple to the driving node and drives the compensation electroluminescent device to illuminate in response to the driving voltage, so as to compensate the aging decay of the display electroluminescent device with the electroluminescent compensation unit.
摘要:
An organic light emitting diode (OLED) pixel circuit is provided by the invention. If a circuit configuration (5T2C) thereof collocates with suitable operation waveforms, a current flowing through an OLED in the OLED pixel circuit may not be changed with a power supply voltage (Vdd) influenced by an IR drop, and may not be varied with a threshold voltage (Vth) shift of a thin-film-transistor (TFT) configured for driving the OLED. Accordingly, brightness uniformity of an OLED display applying the same can be substantially improved.
摘要:
A pixel circuit related to an organic light emitting diode (OLED) is provided, and if a circuit configuration (5T1C) thereof collocates with suitable operation waveforms, a current flowing through an OLED in the OLED pixel circuit is not varied along with a threshold voltage (Vth) shift of a TFT used for driving the OLED. Accordingly, the brightness uniformity of the applied OLED display is substantially improved.
摘要:
A light-emitting element driver circuit is disclosed in embodiment of the invention. The light-emitting element driver circuit includes a driver unit for generating a driving current to the light-emitting element; a data storage unit for storing a threshold voltage of the driver unit and current data signal voltage; and a control unit being controlled to be conducted during a light emitting period so that the driver unit generates a driving current in response to the threshold voltage and current data signal voltage stored in the data storage unit.
摘要:
A touch panel including first electrode bands, second electrode bands, and a transparent dielectric material is provided. The first electrode bands are disposed on a first substrate and extended in a first direction, wherein each of the first electrodes has a plurality of first silts in the form of enclosed configuration. The second electrode bands are disposed on a second substrate, facing to the first electrode bands, and extended in a second direction interlacing the first direction. Each second electrode band is partially exposed by the first silts. The transparent dielectric material is disposed between the first electrode bands and the second electrode bands to provide a changeable gap.
摘要:
A touch panel including first electrode bands, second electrode bands, and a transparent dielectric material is provided. The first electrode bands are disposed on a first substrate and extended in a first direction, wherein each of the first electrodes has a plurality of first slits in the form of enclosed configuration. The second electrode bands are disposed on a second substrate, facing to the first electrode bands, and extended in a second direction interlacing the first direction. Each second electrode band is partially exposed by the first slits. The transparent dielectric material is disposed between the first electrode bands and the second electrode bands to provide a changeable gap.
摘要:
A driver circuit for a light-emitting device includes a light-emitting device, a data receiving unit, a storage unit, a driver unit and a voltage divider. The data receiving unit receives a data signal, the storage unit stores a capacitor voltage, and a positive correlation exists between the capacitor voltage and the data signal. The driver unit is coupled to the light-emitting device, and the driver unit is turned on to drive the light-emitting device according to the capacitor voltage and to generate a threshold voltage of the driver unit. The voltage divider is coupled between the data receiving circuit and the light-emitting device and turned on by the capacitor voltage to generate a divided voltage. The voltage divider detects a voltage variation in the threshold voltage and in a voltage across the light-emitting device and adjusts the divided voltage according to the voltage variation.