摘要:
The present invention relates to a method for preparing graphene using the two-dimensional confined space between the layers of inorganic layered materials. Such method comprises the following steps: mix a soluble salt of a divalent metal ion M2+, a soluble salt of a trivalent metal ion M′3+, a soluble salt of a chain alkyl anion A− and a carbon source molecule C and dissolve them in deionized and CO2-eliminated water to prepare a mixed salt solution; mix the mixed salt solution with an alkali solution under nitrogen protection and subject them to reaction and crystallization under nitrogen, and filter the suspension obtained thereafter and wash the filter cake with deionized water until the pH of the filtrate is 7 to 7.5, and then dry the filter cake to obtain layered double hydroxides with an intercalated structure; under an inert atmosphere or a reducing atmosphere, calcinate the layered double hydroxides with an intercalated structure to provide a calcinated product; add the calcinated product into a hydrochloric acid solution for ultrasonic treatment, and separate the solution by centrifugation and wash the precipitate obtained by centrifugation with deionized water until the pH of the filtrate is 6.5 to 7 to obtain the graphene.
摘要:
The present invention relates to a method for preparing graphene using the two-dimensional confined space between the layers of inorganic layered materials. Such method comprises the following steps: mix a soluble salt of a divalent metal ion M2+, a soluble salt of a trivalent metal ion M′3+, a soluble salt of a chain alkyl anion A− and a carbon source molecule C and dissolve them in deionized and CO2-eliminated water to prepare a mixed salt solution; mix the mixed salt solution with an alkali solution under nitrogen protection and subject them to reaction and crystallization under nitrogen, and filter the suspension obtained thereafter and wash the filter cake with deionized water until the pH of the filtrate is 7 to 7.5, and then dry the filter cake to obtain layered double hydroxides with an intercalated structure; under an inert atmosphere or a reducing atmosphere, calcinate the layered double hydroxides with an intercalated structure to provide a calcinated product; add the calcinated product into a hydrochloric acid solution for ultrasonic treatment, and separate the solution by centrifugation and wash the precipitate obtained by centrifugation with deionized water until the pH of the filtrate is 6.5 to 7 to obtain the graphene.
摘要:
The invention relates to a carbon nanoring and a method for preparing the same. The carbon nanoring according to the present invention is composed of monolayered or multilayered coaxial carbon rings, wherein the carbon ring has a structure similar to that of a closed ring system formed by graphite sheet being rolled, and each of an axial dimension and a radial dimension of the carbon nanoring is nanoscale with the axial dimension being smaller than the radial dimension. The invention further provides a method for preparing the above carbon nanoring including calcinating in an inert atmosphere or a reducing atmosphere a layered double hydroxides obtained by intercalating a long-chain alkyl anion and a carbon source molecule, growing a carbon nanoring within a confined region between layers under the catalysis of the metal element in layers, and removing the metal and the metal oxide by dissolving in an acid to obtain the carbon nanoring. By using this method, the carbon nanoring can be effectively controlled in terms of the axial dimension, the radial dimension, and the number of layers of the carbon ring thereof. The carbon nanoring provided by the present invention has the nano-ring shaped structure and the excellent properties of carbon materials, as well as more edge carbons and dangling bonds, and thus it has broad application prospects in such field as nanodevices, energy storage and sensing.
摘要:
The invention relates to a carbon nanoring and a method for preparing the same. The carbon nanoring according to the present invention is composed of monolayered or multilayered coaxial carbon rings, wherein the carbon ring has a structure similar to that of a closed ring system formed by graphite sheet being rolled, and each of an axial dimension and a radial dimension of the carbon nanoring is nanoscale with the axial dimension being smaller than the radial dimension. The invention further provides a method for preparing the above carbon nanoring including calcinating in an inert atmosphere or a reducing atmosphere a layered double hydroxides obtained by intercalating a long-chain alkyl anion and a carbon source molecule, growing a carbon nanoring within a confined region between layers under the catalysis of the metal element in layers, and removing the metal and the metal oxide by dissolving in an acid to obtain the carbon nanoring. By using this method, the carbon nanoring can be effectively controlled in terms of the axial dimension, the radial dimension, and the number of layers of the carbon ring thereof. The carbon nanoring provided by the present invention has the nano-ring shaped structure and the excellent properties of carbon materials, as well as more edge carbons and dangling bonds, and thus it has broad application prospects in such field as nanodevices, energy storage and sensing.
摘要:
Provided are silica nanoparticles doped with dyes having a negative charge by using cationic polyelectrolyte as templet and preparing method thereof. The nanoparticles have a core-shell structure, inner core comprises cationic polyelectrolyte aggregates, in which fluorescent dye having a negative charge and SiO2 are doped, and optional additive having a negative charge, the shell is consisted of SiO2, wherein the sum of negative charge carried by the additives and the fluorescent dye is less than that of positive charge carried by the polyelectrolyte aggregates. The preparing method comprises the following steps: preparing complex solution of polyelectrolyte and fluorescent dye; prehydrolysis of organosilicon source; coating with organosilicon source. The method can be applied to dope silica with various fluorescent dyes having a negative charge. Various dyes can be doped at the same time, the doping amount, and particle diameter and shape of the product can be controlled by the method. The nanoparticles are spherical, the particle diameter thereof is uniform, and colloid formed therefrom is stable.
摘要:
Provided are silica nanoparticles doped with dyes having a negative charge by using cationic polyelectrolyte as templet and preparing method thereof. The nanoparticles have a core-shell structure, inner core comprises cationic polyelectrolyte aggregates, in which fluorescent dye having a negative charge and SiO2 are doped, and optional additive having a negative charge, the shell is consisted of SiO2, wherein the sum of negative charge carried by the additives and the fluorescent dye is less than that of positive charge carried by the polyelectrolyte aggregates. The preparing method comprises the following steps: preparing complex solution of polyelectrolyte and fluorescent dye; prehydrolysis of organosilicon source; coating with organosilicon source. The method can be applied to dope silica with various fluorescent dyes having a negative charge. Various dyes can be doped at the same time, the doping amount, and particle diameter and shape of the product can be controlled by the method. The nanoparticles are spherical, the particle diameter thereof is uniform, and colloid formed therefrom is stable.