摘要:
Embodiments of the present invention provide a method and a system for analyzing and learning behavior based on an acquired stream of video frames. Objects depicted in the stream are determined based on an analysis of the video frames. Each object may have a corresponding search model used to track an object's motion frame-to-frame. Classes of the objects are determined and semantic representations of the objects are generated. The semantic representations are used to determine objects' behaviors and to learn about behaviors occurring in an environment depicted by the acquired video streams. This way, the system learns rapidly and in real-time normal and abnormal behaviors for any environment by analyzing movements or activities or absence of such in the environment and identifies and predicts abnormal and suspicious behavior based on what has been learned.
摘要:
Techniques are disclosed for matching a current background scene of an image received by a surveillance system with a gallery of scene presets that each represent a previously captured background scene. A quadtree decomposition analysis is used to improve the robustness of the matching operation when the scene lighting changes (including portions containing over-saturation/under-saturation) or a portion of the content changes. The current background scene is processed to generate a quadtree decomposition including a plurality of window portions. Each of the window portions is processed to generate a plurality of phase spectra. The phase spectra are then projected onto a corresponding plurality of scene preset image matrices of one or more scene preset. When a match between the current background scene and one of the scene presets is identified, the matched scene preset is updated. Otherwise a new scene preset is created based on the current background scene.
摘要:
Embodiments of the present invention provide a method and a system for analyzing and learning behavior based on an acquired stream of video frames. Objects depicted in the stream are determined based on an analysis of the video frames. Each object may have a corresponding search model used to track an object's motion frame-to-frame. Classes of the objects are determined and semantic representations of the objects are generated. The semantic representations are used to determine objects' behaviors and to learn about behaviors occurring in an environment depicted by the acquired video streams. This way, the system learns rapidly and in real-time normal and abnormal behaviors for any environment by analyzing movements or activities or absence of such in the environment and identifies and predicts abnormal and suspicious behavior based on what has been learned.
摘要:
Techniques are disclosed for matching a current background scene of an image received by a surveillance system with a gallery of scene presets that each represent a previously captured background scene. A quadtree decomposition analysis is used to improve the robustness of the matching operation when the scene lighting changes (including portions containing over-saturation/under-saturation) or a portion of the content changes. The current background scene is processed to generate a quadtree decomposition including a plurality of window portions. Each of the window portions is processed to generate a plurality of phase spectra. The phase spectra are then projected onto a corresponding plurality of scene preset image matrices of one or more scene preset. When a match between the current background scene and one of the scene presets is identified, the matched scene preset is updated. Otherwise a new scene preset is created based on the current background scene.
摘要:
Embodiments of the present invention provide a method and a system for analyzing and learning behavior based on an acquired stream of video frames. Objects depicted in the stream are determined based on an analysis of the video frames. Each object may have a corresponding search model used to track an object's motion frame-to-frame. Classes of the objects are determined and semantic representations of the objects are generated. The semantic representations are used to determine objects' behaviors and to learn about behaviors occurring in an environment depicted by the acquired video streams. This way, the system learns rapidly and in real-time normal and abnormal behaviors for any environment by analyzing movements or activities or absence of such in the environment and identifies and predicts abnormal and suspicious behavior based on what has been learned.
摘要:
Techniques are disclosed for visually conveying classifications derived from pixel-level micro-features extracted from image data. The image data may include an input stream of video frames depicting one or more foreground objects. The classifications represent information learned by a video surveillance system. A request may be received to view a classification. A visual representation of the classification may be generated. A user interface may be configured to display the visual representation of the classification and to allow a user to view and/or modify properties associated with the classification.
摘要:
Techniques are disclosed for detecting a field-of-view change for a video feed. These techniques differentiate between a new or changed scene and a temporary variation in the scene to accurately detect field-of-view changes for the video feed. A field-of-view change is detected when the position of a camera providing the video feed changes, the video feed is switched to a different camera, the video feed is disconnected, or the camera providing the video feed is obscured. A false-positive field-of-view change is not detected when the scene changes due to a sudden variation in illumination, obstruction of a portion of the camera providing the video feed, blurred images due to an out-of-focus camera, or a transition between bright and dark light when the video feed transitions between color and near infrared capture modes.
摘要:
Techniques are disclosed for visually conveying classifications derived from pixel-level micro-features extracted from image data. The image data may include an input stream of video frames depicting one or more foreground objects. The classifications represent information learned by a video surveillance system. A request may be received to view a classification. A visual representation of the classification may be generated. A user interface may be configured to display the visual representation of the classification and to allow a user to view and/or modify properties associated with the classification.
摘要:
Embodiments of the present invention provide a method and a system for mapping a scene depicted in an acquired stream of video frames that may be used by a machine-learning behavior-recognition system. A background image of the scene is segmented into plurality of regions representing various objects of the background image. Statistically similar regions may be merged and associated. The regions are analyzed to determine their z-depth order in relation to a video capturing device providing the stream of the video frames and other regions, using occlusions between the regions and data about foreground objects in the scene. An annotated map describing the identified regions and their properties is created and updated.
摘要:
Techniques are disclosed for visually conveying a sequence storing an ordered string of symbols generated from kinematic data derived from analyzing an input stream of video frames depicting one or more foreground objects. The sequence may represent information learned by a video surveillance system. A request may be received to view the sequence or a segment partitioned form the sequence. A visual representation of the segment may be generated and superimposed over a background image associated with the scene. A user interface may be configured to display the visual representation of the sequence or segment and to allow a user to view and/or modify properties associated with the sequence or segment.