摘要:
The present invention relates to a method of enabling authentication of an information carrier (105), the information carrier (105) comprising a writeable part (155) and a physical token (125) arranged to supply a response upon receiving a challenge, the method comprising the following steps; applying a first challenge (165) to the physical token (125) resulting in a first response (170), and detecting the first response (170) of the physical token (125) resulting in a detected first response data (175), the method being characterized in that it further comprises the following steps; forming a first authentication data (180) based on information derived from the detected first response data (175), signing the first authentication data (180), and writing the signed authentication data (185) in the writeable part (155) of the information carrier (105). The invention further relates to a method of authentication of an information carrier (105), as well as to devices for both enabling authentication as well as authentication of an information carrier (105).
摘要:
The present invention relates to a method and a device (104) for authenticating a plurality of physical tokens (101, 102, 103). A basic idea of the invention is to supply a sequence of interconnected devices (108, 109, 110), each device comprising a physical token (101, 102, 103), with a challenge of the respective physical token created during enrollment of said respective physical token, wherein the sequence of interconnected devices is arranged such that a data set supplied to the sequence is cryptographically processed with a response of a token comprised in a device and passed on to a token comprised in a subsequent device which further cryptographically processes the processed data set with its response until a response of a final physical token has been used to further cryptographically process the data set. Then, the data set which has been cryptographically processed with the responses of the tokens in the sequence is received and used together with the data set itself and data associated with the response of the respective token to authenticate the sequence of physical tokens.
摘要:
In a device for providing challenge-response pairs a radiation detection element, a challenge-modifying element and preferably also a light source are arranged on the same side of an imaginary plane, which separates said radiation-detecting element from a radiation scattering element. Hence, generation of a speckle pattern having a desired minimum speckle size is facilitated and a more easily assembled device is provided.
摘要:
The present invention relates to a device (100, 200, 300) and a method for creating challenge-response pairs. A basic idea of the present invention is to create a challenge in the form of light emitted onto a light scattering element (103, 203), which light will be scattered in the light scattering element and detected as a response to the challenge by light detecting elements (105, 205). The light scattering element comprises a transmissive material which contains randomly distributed light scattering particles (104, 204), which scatter incident light such that a random speckle pattern is created and spread over the light detecting elements. This random pattern is detected by the light detecting elements, and is known as the response to the challenge (i.e. the light) that was supplied to the light scattering element. Hence, a challenge-response pair is created. Further, picture elements (109, 209) are included in the device in order to enable modification of the challenge created by a light source (101, 201) and supplied to the light scattering element. By activating picture elements and thereby modifying the challenge, one will also modify the response that corresponds to the modified challenge.
摘要:
The present invention relates to a method of creating challenge-response pairs, a method of authenticating a plurality of physical tokens, a system for creating challenge-response pairs and a device for authenticating a plurality of physical tokens. A basic idea of the invention is to interconnect a plurality of physical tokens (101, 102, 103), such as a plurality of uncloneable functions (PUFs), in a sequence, provide the sequence with a challenge (Q and use a response of a PUF as a challenge to a subsequent PUF in the sequence. When a final PUF is reached in the sequence and produces a response (R), a challenge-response pair (CRP) has been created, which pair comprises the challenge provided to the sequence of PUFs and the response produced by the final PUF. At least the challenge of this CRP is then stored.
摘要:
This invention relates to the use 100 of a challenge-response pair 104, 108 for calibrating a device 101 for authenticating 200 a physical token (102) 102.
摘要:
The present invention relates to a method of enabling authentication of an information carrier (105), the information carrier (105) comprising a writeable part (155) and a physical token (125) arranged to supply a response upon receiving a challenge, the method comprising the following steps; applying a first challenge (165) to the physical token (125) resulting in a first response (170), and detecting the first response (170) of the physical token (125) resulting in a detected first response data (175), the method being characterized in that it further comprises the following steps; forming a first authentication data (180) based on information derived from the detected first response data (175), signing the first authentication data (180), and writing the signed authentication data (185) in the writeable part (155) of the information carrier (105). The invention further relates to a method of authentication of an information carrier (105), as well as to devices for both enabling authentication as well as authentication of an information carrier (105).
摘要:
A system 100 for authenticating a physical product 110, such as a banknote, including at least one physical product and a verification device 130. The physical product including a random distribution of a plurality of physically detectable particles 112 in a substrate of the product. In association with the physical product, a digital representation (114) is stored (‘stored representation’) of measured physical properties of the particles including an actual distribution of at least some of the particles, where the physical properties are measured through reflection and transmission. The verification device includes a measurement unit 450 for determining a digital representation (‘measured representation’) based on measurements of physical properties of the particles, including an actual distribution of at least some of the particles, through reflection and transmission; and a comparison unit 470 for comparing the measured representation with the stored representation.
摘要:
An optical arrangement of at least a coherent light source (1), a strongly scattering object (5) (the PUF), and a pixe-lated photo-detector (6), wherein the pixels are comparable in size with the bright and dark patches of the speckle pattern produced by coherent radiation traversing the scattering object (5). Quantitively, the pixel size should be roughly λ/NA, where λ is the wave-length, and (i) NA=a/z for free-space geometry, with a being the beam radius and z being the distance between the exit surface of the PUF (5) and the pixelated detector (6), or (ii) NA is the numerical aperture of a lens (7) in an imaging geometry. In a preferred embodiment of the invention, there are tentative requirements that the pixels should be at least smaller than ηmaxλNA and preferably larger than ηmaxλ/NA, where (in an exemplary embodiment) ηmax=5 and ηmin=0.05, say. It will be understood by a person skilled in the art that the present invention is concerned with the optical arrangement of the PUF (5) and the photo-detector (6), rather than the photo -detector (6) per se.
摘要:
In a zoom lens (30) comprising, from the object side to the image side, a front lens group (12) and a controllable lens group (24), the controllable lens group comprises two lens elements (25, 26) having different dispersions and being movable with respect to each other so as to perform a focusing action. One of the lens elements corrects for the dispersion of the zoom lens. Preferably, the zoom lens comprises at least one folding mirror.