摘要:
The invention is a generalized process for dynamically restoring traffic in the event of an outage in a telecommunications network. A Centralized Processing System (CPS) receives alarms from communications ports of diverse network equipment (DNE) elements. The CPS then proceeds to analyze and correlate the alarms in an effort to isolate the location of the outage. In doing so, the CPS utilizes a Network Topology database that is preferrably updated in real-time with topology data obtained directly from the DNE network. The CPS will then identify and prioritize all traffic-bearing trunks impacted by the outage. The CPS then generates and implements a restoral route for each impacted trunk by issuing appropriate reroute command to the DNEs. If a DNE responds with an indication that a command failed and that its particular restoral segment is not possible, the CPS updates Network Topology database to indicate this segment as unavailable and proceeds to generate another restoral route. After implementing a restoral route, the CPS verifies that traffic is restored. When the cause of the outage has been fixed, the CPS restores the original route.
摘要:
A system and method for dynamically determining the physical connection topology between diverse network elements (DNEs) within a communication network. Each DNE is audited on a periodic basis to determine the arrangement, configuration, cross-connection, and alarm status of each communication port within each DNE in the communications network. A topology database is maintained with such baseline information. Each DNE is configured with at least one mismatched port. Mismatched ports are cross-connected with communication ports within DNEs so that signal mismatch alarms are generated by communication ports coupled with the mismatched ports in other DNEs. Signal mismatch alarms are collected and processed so that connectivity status may be derived based on the baseline data, expected alarms, and the receipt of such alarms or lack thereof. A topology database is continuously updated to reflect such derived information.
摘要:
In a telecommunications network provisioned with different types of restoration processes, to ensure that the operation of one restoration process does not infringe upon other nodes that are actively executing a different restoration process, a request is sent by one of the restoration processes, under the guise of the operation system that oversees that process, to the operation system that oversees the other restoration process. The controller of the nodes that are performing the other restoration process, in receipt of the request, sends a disable restoration process message to those nodes under its control. Each of those nodes, upon receipt of the disable restoration process message, would disable the restoration process it is provisioned with so long as it is not actively engaging in that restoration process. If it is, it will continue to execute that restoration process until a safe stop point is reached, at which time it ceases that restoration process. Upon cessation of the particular restoration process, the node sends an acknowledge message to its controller, which, when in receipt of such acknowledge message from all of the nodes under its control, sends a disable acknowledged message to the controller of the first restoration process informing the latter that the nodes under its control can now be operated using the first restoration process. The above method is applicable to a telecommunications network provisioned with multiple layers of restoration processes including for example DRA, RTR and centralized restoration.
摘要:
A system and method for restoring communication between at least one pair of nodes in a network. Distributed intelligence is provided by messaging between adjacent nodes in the network. The messages in combination with user-configurable timers and rules provide fault isolation, forward flooding, reverse linking and connection.
摘要:
To verify that a communications path restored in response to a failure to a telecommunications network is a validly restored path, each of the end nodes terminating the restored communications path sends out a message containing data that identifies that node and the ID of the access/egress port to which the STS-1 circuit forming the communications path is connected. Once the respective path verification messages are exchanged between the two end nodes of the communications path, the Operations Support System (OSS) that oversees the topology of the network retrieves those messages and compares the data contained therein with the data of the same type of messages from the same ends nodes that were stored just prior to the occurrence of the disruption to the communications path. The restored communications path is deemed to be verified if there are no differences between the path verification messages retrieved after the failure event and the path verification messages stored just prior to the failure event.
摘要:
A system and method for restoring communication between at least one pair of nodes in a network. Distributed intelligence is provided by messaging between adjacent nodes in the network. The messages in combination with user-configurable timers and rules provide fault isolation, forward flooding, reverse linking and connection.