摘要:
An illumination brightness control apparatus receives an input voltage from a light dimmer and produces a control signal to regulate a drive signal to a power conversion switch of a switching mode power converter. The apparatus includes a voltage conditioning circuit to condition the dimmer input voltage to provide a conditioned voltage signal; an ADC circuit to sample analog data of the conditioned voltage signal at a sampling rate that is high relative to a nominal variation rate of the dimmer input voltage and to provide digital data corresponding to the sampled analog data; a digital signal processing circuit to produce a running data average of the digital data; and a controller to produce a signal corresponding to the running data average as the control signal to regulate the drive signal.
摘要:
An illumination brightness control apparatus receives an input voltage from a light dimmer and produces a control signal to regulate a drive signal to a power conversion switch of a switching mode power converter. The apparatus includes a voltage conditioning circuit to condition the dimmer input voltage to provide a conditioned voltage signal; an ADC circuit to sample analog data of the conditioned voltage signal at a sampling rate that is high relative to a nominal variation rate of the dimmer input voltage and to provide digital data corresponding to the sampled analog data; a digital signal processing circuit to produce a running data average of the digital data; and a controller to produce a signal corresponding to the running data average as the control signal to regulate the drive signal.
摘要:
A magnet assembly is provided. The magnet assembly comprises a magnet configured to generate a magnetic field and an iron shield configured to shield the magnet. The magnet assembly further comprises one or more positive temperature coefficient heaters disposed on the iron shield and configured to stabilize temperature of the iron shield. An iron shield assembly and a method for temperature control of the magnet assembly are also presented.
摘要:
Disclosed herein are a method for implementing switching between layer-2 multicast route tracing and layer-3 multicast route tracing, and a method, a system, a router and an apparatus for differentiating between a layer-2 property and a layer-3 property. One of the methods includes: The query apparatus judges whether to perform layer-2 multicast route tracing, and adds an IP option of layer-2 multicast route tracing into the IGMP Tracert Query packet if layer-2 multicast route tracing needs to be performed. The last-hop router receives the IGMP Tracert Query packet, judges whether the packet carries the IP option of layer-2 multicast route tracing, and transmits the IGMP Tracert Query packet to a downstream layer-2 node transparently if the packet carries the IP option, or initiates layer-3 multicast route tracing if the packet carries no such IP option. The method, system, and router disclosed herein can implement switching between layer-2 multicast route tracing and layer-3 multicast route tracing, and enable the query apparatus to identify the layer property of each IGMP Tracert Response data block.
摘要:
The present invention relates to folic acid-polysaccharide complexs and method of preparation thereof, more particularly relates to folic acid-Dextran complexs, method of preparation thereof, pharmaceutical compositions having said complex as active component and uses of said composition in therapy of tumors. The folic acid-polysaccharide complexs of the present invention have general formula of: (X)n—Y, wherein X is identical or different, and is selected from folic acid, derivatives of folic acid and other substances that can enter into cell via the pathway of folic acid receptor; Y is polysaccharide; n≧1.
摘要:
A fast, texture morphing algorithm for real-time computer simulation and video games dynamically generates objects “on the fly” by simplifying and reducing the computational load required for a texture morphing/blending process. Incremental interpolation techniques compute a morph parameter based on previous value and morph change rate. Precomputed initial and incremental morph parameter values for each texel component are applied during real-time morphing procedures using integer arithmetic. Approximation errors are reduced by incrementing/decrementing by an extra integer value when the number of morph iterations is a multiple of a frame counter. The frame counter avoids over-runs, and the morphing procedure is “snapped” the texel value to the precise texture target value to prevent under-runs and corresponding artifacts. Interlacing (applying interpolation to a subset of the texels each frame) significantly reduces computational load without introducing significant image artifacts. The morph texture buffer data structure is initially decomposed off-line to reduce the number of real-time calculations required to manipulate texel component data.
摘要:
Compressing and decompressing techniques for transformation matrices 3D computer graphics systems use to animate objects achieve high compression ratios by taking advantage of common characteristics of homogenous 3D transformation matrices. The techniques use a bitmap to encode information on locations of ones and zeros of the matrix—bypassing the penchant of compilers to represent such information as high-precision numbers. Since most video game processors and display hardware are constrained by their resolutions and since an original transformation matrix often stores data that is more accurate than necessary, the techniques convert some real numbers in the matrix (e.g., those within the range of −1 and 1) into integers by scaling them by a constant. The resulting compressed matrices occupy much less storage space than their non-compressed counterparts, and can be efficiently decompressed in real time for use in interactive real time 3D animations.
摘要:
Loss-less data compression/decompression especially useful in a limited resource environment such as a handheld portable video game system allows graphics and/or attribute data to be efficiently and quickly decompressed on an as-needed basis in real time response to interactive user inputs. A two-level run-length-encoding is used to encode redundant patterns and redundant symbols. A common sentinel field format encodes whether data following the field is non-redundant data, a symbol run, or a pattern run. Compression ratios of 60% for representative symbol-mapped video display graphics/attribute files can be achieved.
摘要:
A composite material of carbon-coated graphene oxide, its preparation method and application are provided. The method for preparing the composite material comprises the following steps: obtaining graphene oxide; mixing the said graphene oxide and the source of organic carbon according to the mass ratio of 1-10:1 in water to form a mixed solution; making the mixed solution react hydrothermally under the condition of 100˜250° C., cooling, solid-liquid separating, washing, and drying to attain the composite material. The advantages of the preparation method are simple process, low energy consumption, low cost, no pollution and suitable for industrial production. The advantages of composite material are stable structural performance, high electric conductivity. Lithium ion battery and/or capacitor have/has high power density while the composite material is used to prepare the anode material of lithium ion battery and/or capacitor.
摘要:
Provided are a lithium iron phosphate composite material, the production method thereof and the use thereof The lithium iron phosphate composite material has a micro-size particle structure, which contains nano-size grains of lithium iron phosphate and graphene inside, and bears nano-carbon particulates outside. The lithium iron phosphate composite material has the properties of high conductivity, high-rate charge/discharge performance and high tap density. The production method comprises: preparing an iron salt mixed solution according to the mole ratio of P:Fe=1:1; adding the above solution into an organic carbon source aqueous solution, followed by mixing and reacting, so as to obtain nano-iron phosphate covered with organic carbon source; adding the above nano-iron phosphate covered with organic carbon source and a lithium source compound into an aqueous solution of graphene oxide, agitating, mixing, and then spray drying, so as to obtain a precursor of lithium iron phosphate composite material; calcinating said precursor in a reduction atmosphere and cooling naturally, so as to obtain said lithium iron phosphate composite material. The material is used for lithium ion battery or positive electrode material.