摘要:
A method and a device for nondestructively detecting an elasticity of a viscoelastic medium are provided. The method includes: acquiring with an ultrasonic imaging probe an ultrasonic image of the viscoelastic medium; determining an area to detect the elasticity of the viscoelastic medium according to the ultrasonic image; driving the ultrasonic transducer probe with a low-frequency vibration by a vibrator so as to produce an elastic wave in the viscoelastic medium; producing an ultrasonic wave by the ultrasonic transducer probe, and transmitting the ultrasonic wave to the viscoelastic medium; collecting an ultrasonic echo; calculating an elastic parameter of the viscoelastic medium according to the collected ultrasonic echo.
摘要:
Provided are method, apparatus and device for measuring a thickness of a subcutaneous tissue, and a computer-readable storage medium. The method includes: emitting ultrasonic detection waves inwards from a skin surface, and acquiring ultrasonic echo signals of the ultrasonic detection waves; determining, according to ultrasonic parameter values of the ultrasonic echo signals and a characteristic parameter threshold of a subcutaneous tissue, the moment the ultrasonic echo signals from the boundary of the subcutaneous tissue are received; and calculating a thickness of the subcutaneous tissue according to the moment the ultrasonic echo signals from the boundary of the subcutaneous tissue are received, thereby enabling a precise measure of the thickness of the subcutaneous tissue.
摘要:
Disclosed are a method, apparatus and device for calculating signal attenuation, and a computer-readable storage medium. The method comprises: receiving (101) an ultrasound signal by an ultrasonic imaging system, performing (102) signal recovery operation on the ultrasound signal to obtain an ultrasound signal to be calculated; determining a type of the ultrasound signal to be calculated, and calculating (103) attenuation information of the ultrasound signal to be calculated by adopting a calculation mode corresponding to the type according to the type of the ultrasound signal to be calculated. As such, the signal attenuation calculation flow is simplified, thereby enabling use of commercial probes therein, bringing convenience in operation, and increasing applicability. Accuracy and efficiency of attenuation calculation can be improved by means of performing signal recovery on an obtained ultrasonic signal and then performing attenuation calculation thereon.
摘要:
Disclosed are a method and a device for elasticity detection. The method comprises: controlling an excitation device (2) to periodically excite N shear waves in a tissue at a preset time interval and controlling an ultrasonic transducer (3) to transmit ultrasonic waves (101) to the tissue, where the excitation device and the ultrasonic transducer are maintained in contact with a surface of the tissue; receiving, by the ultrasonic transducer (3), an ultrasonic echo signal (102) corresponding to each of the shear waves; acquiring a propagation characteristic parameter (103) of each of the shear waves according to the ultrasonic echo signal corresponding to each of the shear waves; calculating an elasticity parameter of the tissue (104) according to propagation characteristic parameters of the N shear waves and a tissue density of the tissue.
摘要:
A method and a device for nondestructively detecting an elasticity of a viscoelastic medium are provided. The method includes: driving an ultrasonic transducer probe with a low-frequency vibration by a vibrator so as to produce an elastic wave in the viscoelastic medium; producing an ultrasonic wave by the ultrasonic transducer probe, and transmitting the ultrasonic wave to the viscoelastic medium; collecting an ultrasonic echo when the elastic wave is propagated in the viscoelastic medium and the ultrasonic transducer probe stops or almost stops vibrating; calculating an elastic parameter of the viscoelastic medium according to the collected ultrasonic echo.
摘要:
A method and a device for nondestructively detecting an elasticity of a viscoelastic medium are provided. The method includes: detecting a pressure applied to the viscoelastic medium by an ultrasonic transducer probe; in response to the pressure satisfying a predetermined condition, triggering detecting the elasticity of the viscoelastic medium; driving the ultrasonic transducer probe with a low-frequency vibration by a vibrator so as to produce an elastic wave in the viscoelastic medium; producing an ultrasonic wave by the ultrasonic transducer probe, and transmitting the ultrasonic wave to the viscoelastic medium; collecting an ultrasonic echo; calculating an elastic parameter of the viscoelastic medium according to the collected ultrasonic echo.
摘要:
A method for quantifying viscoelasticity of a medium includes: obtaining a position-time graph of vibration propagation after the medium is subjected to a vibration excitation, determining an angle with maximum signal energy in the position-time graph by using angle projection, where the angle with the maximum signal energy corresponds to a slope of the position-time graph and the slope of the position-time graph is the propagation velocity of the vibration in the medium. Since the propagation velocity of the vibration in the medium is related to the viscoelasticity of the medium, a viscoelasticity parameter of the medium can be quantitatively calculated after the slope of the position-time graph is obtained. The method does not need to select a feature point from the position-time graph to calculate the slope of the position-time graph, and can efficiently and accurately quantifies viscoelasticity of the medium.
摘要:
Disclosed are a method, an apparatus and a device for locating a region of interest of a tissue, and a storage medium. The method comprising: acquiring ultrasonic echo signals from a detected region; identifying interfering regions and a region of interest in the detected region according to ultrasonic parameter values of the ultrasonic echo signals; judging whether the sizes of the interfering regions meet a preset condition or not; and if the sizes of the interfering regions meet the preset condition, removing interfering signals corresponding to the interfering regions from the ultrasonic echo signals. As such, the interfering signals may be removed while the interfering regions are small. Consequently, the region of interest can be adaptively located, and signals with interfering signals removed can be used for signal processing and information extraction related to the region of interest, thereby increasing the accuracy and robustness of signal analysis related to the region of interest and improving the accuracy of a result of detection. (FIG. 1)