Abstract:
A toner including a resin; an optional wax; and a colorant; wherein the colorant has disposed thereon a reactive component having at least one cross-linkable carbon-carbon double bond and wherein the tribo electric charge of the toner is adjusted through surface treatment of the colorant with the reactive component. Also a colorant having disposed thereon a reactive component having at least one cross-linkable carbon-carbon double bond, wherein the reactive component disposed on the colorant is selected from the group consisting of methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate, cyclohexyl methacrylate, stearyl methacrylate, acrylic acid, methacrylic acid, maleic acid, hydroxyethyl methacrylate, hydroxypropyl acrylate, glycidyl acrylate, alkoxymethylol acrylamide, styrene, vinyl toluene, methylstyrene, acrylonitrile, methacrylonitrile, bisphenol A glycerolate diacrylate, and mixtures and combinations thereof.
Abstract:
A method for improving z-axis strength of a 3D printed object is disclosed. For example, the method includes printing a three-dimensional (3D) object with a polymer and magnetic particles, heating the 3D object to a temperature at approximately a melting temperature of the polymer, and applying a magnetic field to the 3D object to locally move the magnetic particles in the polymer to generate heat and fuse the polymer around the magnetic particles to improve a z-axis strength of the 3D object.
Abstract:
A method for improving z-axis strength of a 3D printed object is disclosed. For example, the method includes printing a three-dimensional (3D) object with a polymer and magnetic particles, heating the 3D object to a temperature at approximately a melting temperature of the polymer, and applying a magnetic field to the 3D object to locally move the magnetic particles in the polymer to generate heat and fuse the polymer around the magnetic particles to improve a z-axis strength of the 3D object.
Abstract:
A method for improving z-axis strength of a 3D printed object is disclosed. For example, the method includes printing a three-dimensional (3D) object with a polymer and magnetic particles, heating the 3D object to a temperature at approximately a melting temperature of the polymer, and applying a magnetic field to the 3D object to locally move the magnetic particles in the polymer to generate heat and fuse the polymer around the magnetic particles to improve a z-axis strength of the 3D object.
Abstract:
The present embodiments relate to toner particles having an increased surface hardness, and toners comprising said toner particles. More specifically, the present embodiments relate to toner particles having an average surface hardness of from about 130 mPa to about 250 mPa, comprising a core surrounded by a shell, wherein the shell comprises a crystalline resin.