Abstract:
Access is provided to a variable data printing app and a code detection app on a computer server. The variable data printing app is adapted to add machine-readable code to printable items and create a decoder app capable of decoding the machine-readable code. The code detection app is adapted to receive user identification information and transmit the user identification information to designer devices. The printable items are printed as printed products. The designer devices validate a user device based on the validity of the user identification information. In response, the variable data printing app is adapted to transmit the decoder app to validated user devices. The code detection app, operating on the user device, is adapted to decode the machine-readable code in user-acquired images into an optional secure link with the designer devices.
Abstract:
An image system for detecting defects in an image may include a processing device to detect defects in a target image by analyzing the activity level in a reference and the target image. The system may identify a quiet area/pixel in the reference image based on the activity level, check the activity level of the corresponding pixel in the target image, and classify the pixel in the target image as defective if the activity level of the pixel in the target image exceeds a noise threshold. The system may additionally swap the reference and target image, repeat the detection steps and combine the detection results with those before the swap. The system may also include an image sensor to scan a printed document of the reference image into a scanned electronic document (the target image).
Abstract:
A system for detecting defects in a print system may include a print engine to print an electronic document (a reference image) and yield a printed document. The system may also include an image sensor to scan the printed document into a scanned electronic document (a target image). The system may include a processing device to detect defects in the printed document by analyzing the activity level in the reference and target image. The system may identify a quiet area/pixel in the reference image based on the activity level, check the activity level of the corresponding pixel in the target image, and classify the pixel in the target image as defective if the activity level of the pixel in the target image exceeds a noise threshold. The system may additionally swap the reference and target image, repeat the detection steps and combine the detection results with those before the swap.
Abstract:
Methods and systems print an original image to form a printed sheet, scan the printed sheet, and overlay the original image on an area of the scanned image where original image is located, to produce an overlay image. A border is added to the original image in the overlay image to modify the original image into an enlarged original image. Markings from an area of the overlay image where the enlarged original image is positioned are removed to produce a white space image. Defects in the white space image are detected and highlighted by adding highlight markings to the white space image where the defects are located, to produce a defect image. The defect image is displayed.
Abstract:
Devices and methods detect an amount of toner on a photoreceptor caused by a printing process, and calculate a reload signal using a processor. The reload signal shows the amount of toner being reloaded on a donor roll from a toner container to replace the toner being removed from the donor roll during the printing process (as detected by an optical sensor). Such devices and methods generate a toner concentration (TC) sensor response representing a concentration of toner particles within the toner/developer mixture using a TC sensor, calculate a calibration sensor relationship between the TC sensor response and the reload signal, using the processor, based on changes in the TC sensor response and the reload signal that occur while changing the toner concentration during the printing process, and calibrate the TC sensor based on differences between the calibration sensor relationship and a previously established model relationship using the processor.
Abstract:
A method of printer operation enables visual detection of defective inkjets. The method includes operating inkjets in a predetermined number of printheads that eject a same color of ink to form a test pattern having three portions. One portion is printed by the even-numbered inkjets in each printhead, one portion is printed by the odd-numbered inkjets in each printhead, and a third portion is printed by all of the inkjets in each printhead. The portions are printed immediately adjacent to one another in a process direction with the third portion between the other two portions.
Abstract:
Access is provided to a variable data printing app and a code detection app on a computer server. The variable data printing app is adapted to add machine-readable code to printable items and create a decoder app capable of decoding the machine-readable code. The code detection app is adapted to receive user identification information and transmit the user identification information to designer devices. The printable items are printed as printed products. The designer devices validate a user device based on the validity of the user identification information. In response, the variable data printing app is adapted to transmit the decoder app to validated user devices. The code detection app, operating on the user device, is adapted to decode the machine-readable code in user-acquired images into an optional secure link with the designer devices.
Abstract:
A system and method enable determining a total colorant limit for printing images. The system includes memory which stores instructions for: determining a grain value for each of a set of printed patches printed on a first print media, the grain value being based upon a visual contrast sensitivity function computed for the respective patch, the set of printed patches including patches printed on the print media at different total colorant values; determining a total colorant limit for the first print media, as a function of the total colorant values and corresponding grain values for the printed patches in the set, wherein the total colorant limit is a total colorant value which corresponds to a grain value which does not exceed a threshold grain value for the first print media. A processor executes the instructions.
Abstract:
A system and method are provided for registering source and target images. The method includes receiving a first source image and a first scanned image. The first scanned image is one that has been generated by scanning a printed page that has been generated by printing the first source image or a transformed first source image derived from the first source image. Locations of corners of a target image in the first scanned image are identified. With a first computed transform, the corners of the target image in the first scanned image are aligned to corners of the first source image to generate an aligned target image. Local features in the source image and aligned target image are detected. A second transform is computed to align the target image with the first source image, based on the detected local features.
Abstract:
An image system for detecting defects in an image may include a processing device to detect defects in a target image by analyzing the activity level in a reference and the target image. The system may identify a quiet area/pixel in the reference image based on the activity level, check the activity level of the corresponding pixel in the target image, and classify the pixel in the target image as defective if the activity level of the pixel in the target image exceeds a noise threshold. The system may additionally swap the reference and target image, repeat the detection steps and combine the detection results with those before the swap. The system may also include an image sensor to scan a printed document of the reference image into a scanned electronic document (the target image).