Abstract:
Print head jet stack heating and temperature measurement systems and methods are disclosed that both heat the jet stack and determine a temperature of the jet stack. The heating and temperature determination are performed by a flex circuit that includes multiple layers. One of the layers heats the jet stack and another one of the layers provides data that determines the temperature of the jet stack. The heating layer and the temperature sensing layer are separated by an insulative material in the flex circuit. The temperature of the jet stack can be sent to a print head controller that then determines whether to increase or decrease the temperature of the jet stack.
Abstract:
A print head has a jet stack, a jet stack heating and temperature measuring element thermally connected to the jet stack, the jet stack heating and temperature measuring element including: a first, etched copper layer having heat spreading characteristics and including a resistive heat source electrically connected in series to a voltage source and a switch; an electrically insulative on a back side of the first copper layer; and a second, etched copper layer on a side of the electrically insulative layer opposite the first copper layer, the second copper layer having a temperature sensing element to sense a temperature of the print head without a thermistor, the temperature sensing element connected in series with a voltage source and a transistor. A print head may use a thermistor but the heat spreading layer eliminates the need for a heat sink to attach to the print head.
Abstract:
Print head jet stack heating and temperature measurement systems and methods are disclosed that both heat the jet stack and determine a temperature of the jet stack. The heating and temperature determination are performed by a flex circuit that includes multiple layers. One of the layers heats the jet stack and another one of the layers provides data that determines the temperature of the jet stack. The heating layer and the temperature sensing layer are separated by an insulative material in the flex circuit. The temperature of the jet stack can be sent to a print head controller that then determines whether to increase or decrease the temperature of the jet stack.