Abstract:
A system for estimating range to an object comprising a system for estimating range to an object comprising a transmitter to transmit at least one UWB signal, a receiver to receive at least one UWB signal, a sampler to sample the received UWB signal depending on a plurality of clock and/or sample pulses having a first frequency, and a circuit and/or processor configured to generate a fractional signal having a second frequency that is lower that the first frequency and a phase that is dependant on the delay between when the UWB signal is actually received and when the received UWB signal is first sampled, and determine the range based on at least a first number of clock or sample pulses between transmitting and receiving the UWB signal and the phase of the fractional signal. Also a method of estimating range to an object.
Abstract:
A method for transforming an audio signal and a system employing that method is disclosed. The method proceeds by extracting from the signal components that fall within a stop band, for example, using one or more low-pass filters. Then, a set of one or more harmonics of the extracted components is generated by down-sampling to create an intermediate signal, which is then repeated. Each harmonic is then weighted by controlling its gain by application to it of a respective weighting factor, the factors being determined by the psychoacoustic properties of a system that will reproduce the signal. Then, the weighted harmonics are added to the audio signal (which may have been subject to a delay to ensure synchronisation) to create an output signal.
Abstract:
A method for estimating one or more parameters of a ultra wideband signal and a receiver system for receiving ultra wideband signals is provided. The method for estimating one or more parameters of a signal in an ultra wide band system including estimating the parameter(s) for a first signal element in a received signal then removing this signal element from the signal to obtain a modified signal. The parameter(s) for a number of further signal elements are then estimated and these elements are removed from the modified signal to form a refined signal. The parameter(s) for the first signal element are re-estimated to re-define the first signal element based on the refined signal minus the signal element having the greatest amplitude. The parameter(s) for the signal element having the greatest amplitude are re-estimated to re-define this signal element. The steps are repeated to generate a refined estimate of the parameter(s) for the first signal element. There is also disclosed a receiver for performing the above steps.
Abstract:
A transducer array comprises a conductive back plate 32, a conductive front plate 33 having openings 62, and a plurality of piezoelectric vibrator elements 31 located in an array between the plates. The vibrator elements 31 are two-layer elements which each include a metal portion 311 and a PZT element 312. These elements 311, 312 are in electrical contact with the respective plates. The vibrator elements 31 are attached to support elements 51 upstanding as part of the back plate 32. The transducer array can be formed as a batch process in which the vibrator elements 31 are formed simultaneously, and then simultaneously attached to the support elements 51.
Abstract:
A method for estimating one or more parameters of a ultra wideband signal and a receiver system for receiving ultra wideband signals is provided. The method for estimating one or more parameters of a signal in an ultra wide band system including estimating the parameter(s) for a first signal element in a received signal then removing this signal element from the signal to obtain a modified signal. The parameter(s) for a number of further signal elements are then estimated and these elements are removed from the modified signal to form a refined signal. The parameter(s) for the first signal element are re-estimated to re-define the first signal element based on the refined signal minus the signal element having the greatest amplitude. The parameter(s) for the signal element having the greatest amplitude are re-estimated to re-define this signal element. The steps are repeated to generate a refined estimate of the parameter(s) for the first signal element. There is also disclosed a receiver for performing the above steps.
Abstract:
A method of measuring distance between a target and a receiver in a ranging system may comprise transmitting a first pulse at a first time determined by a sampling clock in a receiver, receiving the first pulse, sampling the first pulse at a predetermined amplitude threshold using the sampling clock and determining the time of arrival of the first pulse in terms of a number of periods of the sampling clock after the first pulse was transmitted. This may be repeated for a second pulse and the average times of arrival of the first and second pulses are determined to obtain an averaged estimated time of arrival. The distance between the target and the receiver may be determined by multiplying the averaged estimated time of arrival by the speed of propagation of the transmitted pulses. There is also disclosed an apparatus for measuring distance.
Abstract:
A system and method for determining position of, for example, a robot based on reflected signals comprises a transmitter for transmitting signals in a number of directions within a range of directions and a receiver for receiving echoes of the signals from any direction in the range. The transmitter has a first rotatable antenna and the receiver has a second rotatable antenna which is mechanically couplable to the second antenna. The received echoes are processed by a processor to derive echo data signals indicative of the distance of the system to one or more reflective surfaces and the direction of the reflective surface(s) relative to the system. The processor is arranged to determine the position of the system relative to a starting position from the derived echo data signals indicative of the distance of the system to the reflective surface(s) and the direction of the reflective surface(s) relative to the system.
Abstract:
A system for estimating range to an object comprising a system for estimating range to an object comprising a transmitter to transmit at least one UWB signal, a receiver to receive at least one UWB signal, a sampler to sample the received UWB signal depending on a plurality of clock and/or sample pulses having a first frequency, and a circuit and/or processor configured to generate a fractional signal having a second frequency that is lower that the first frequency and a phase that is dependant on the delay between when the UWB signal is actually received and when the received UWB signal is first sampled, and determine the range based on at least a first number of clock or sample pulses between transmitting and receiving the UWB signal and the phase of the fractional signal. Also a method of estimating range to an object.
Abstract:
A method of measuring distance between a target and a receiver in a ranging system may comprise transmitting a first pulse at a first time determined by a sampling clock in a receiver, receiving the first pulse, sampling the first pulse at a predetermined amplitude threshold using the sampling clock and determining the time of arrival of the first pulse in terms of a number of periods of the sampling clock after the first pulse was transmitted. This may be repeated for a second pulse and the average times of arrival of the first and second pulses are determined to obtain an averaged estimated time of arrival. The distance between the target and the receiver may be determined by multiplying the averaged estimated time of arrival by the speed of propagation of the transmitted pulses. There is also disclosed an apparatus for measuring distance.
Abstract:
An audio-visual reproduction apparatus is provided. The audio-visual reproduction apparatus includes a visual display screen and an ultrasonic transducer array having two or more transducer elements arranged around the periphery of the screen for generating an ultrasonic beam modulated with an audio-frequency signal. Non-linear effects in the air demodulate the audio-signal to generate an audio beam propagating perpendicular to the screen. Such an integration of audio and vision may make the user feel as if the sound is being generated from the display screen when he or she is watching it, and also may project the sound towards a target user and seldom, or never, disturb unrelated persons. The ultrasonic transducer array may be made up of independent transducer elements, or may comprise two or more sub-arrays of transducer elements.