摘要:
A method and apparatus for training an acoustic model are disclosed. A training corpus is accessed and converted into an initial acoustic model. Scores are calculated for a correct class and competitive classes, respectively, for each token given the acoustic model. From this score a misclassification measure is calculated and then a loss function is calculated from the misclassification measure. The loss function also includes a margin value that varies over each iteration in the training. Based on the calculated loss function the acoustic model is updated, where the loss function with the margin value is minimized. This process repeats until such time as an empirical convergence is met.
摘要:
A method and apparatus for training an acoustic model are disclosed. A training corpus is accessed and converted into an initial acoustic model. Scores are calculated for a correct class and competitive classes, respectively, for each token given the acoustic model. From this score a misclassification measure is calculated and then a loss function is calculated from the misclassification measure. The loss function also includes a margin value that varies over each iteration in the training. Based on the calculated loss function the acoustic model is updated, where the loss function with the margin value is minimized. This process repeats until such time as an empirical convergence is met.
摘要:
A method and apparatus for training an acoustic model are disclosed. A training corpus is accessed and converted into an initial acoustic model. Scores are calculated for a correct class and competitive classes, respectively, for each token given the initial acoustic model. Also, a sample-adaptive window bandwidth is calculated for each training token. From the calculated scores and the sample-adaptive window bandwidth values, loss values are calculated based on a loss function. The loss function, which may be derived from a Bayesian risk minimization viewpoint, can include a margin value that moves a decision boundary such that token-to-boundary distances for correct tokens that are near the decision boundary are maximized. The margin can either be a fixed margin or can vary monotonically as a function of algorithm iterations. The acoustic model is updated based on the calculated loss values. This process can be repeated until an empirical convergence is met.
摘要:
A method and apparatus for training an acoustic model are disclosed. A training corpus is accessed and converted into an initial acoustic model. Scores are calculated for a correct class and competitive classes, respectively, for each token given the initial acoustic model. Also, a sample-adaptive window bandwidth is calculated for each training token. From the calculated scores and the sample-adaptive window bandwidth values, loss values are calculated based on a loss function. The loss function, which may be derived from a Bayesian risk minimization viewpoint, can include a margin value that moves a decision boundary such that token-to-boundary distances for correct tokens that are near the decision boundary are maximized. The margin can either be a fixed margin or can vary monotonically as a function of algorithm iterations. The acoustic model is updated based on the calculated loss values. This process can be repeated until an empirical convergence is met.
摘要:
Parameters for distributions of a hidden trajectory model including means and variances are estimated using an acoustic likelihood function for observation vectors as an objection function for optimization. The estimation includes only acoustic data and not any intermediate estimate on hidden dynamic variables. Gradient ascent methods can be developed for optimizing the acoustic likelihood function.
摘要:
Deep Neural Network (DNN) training technique embodiments are presented that train a DNN while exploiting the sparseness of non-zero hidden layer interconnection weight values. Generally, a fully connected DNN is initially trained by sweeping through a full training set a number of times. Then, for the most part, only the interconnections whose weight magnitudes exceed a minimum weight threshold are considered in further training. This minimum weight threshold can be established as a value that results in only a prescribed maximum number of interconnections being considered when setting interconnection weight values via an error back-propagation procedure during the training. It is noted that the continued DNN training tends to converge much faster than the initial training.
摘要:
A deep tensor neural network (DTNN) is described herein, wherein the DTNN is suitable for employment in a computer-implemented recognition/classification system. Hidden layers in the DTNN comprise at least one projection layer, which includes a first subspace of hidden units and a second subspace of hidden units. The first subspace of hidden units receives a first nonlinear projection of input data to a projection layer and generates the first set of output data based at least in part thereon, and the second subspace of hidden units receives a second nonlinear projection of the input data to the projection layer and generates the second set of output data based at least in part thereon. A tensor layer, which can converted into a conventional layer of a DNN, generates the third set of output data based upon the first set of output data and the second set of output data.
摘要:
A speech recognition system includes a receiver component that receives a distorted speech utterance. The speech recognition also includes an adaptor component that selectively adapts parameters of a compressed model used to recognize at least a portion of the distorted speech utterance, wherein the adaptor component selectively adapts the parameters of the compressed model based at least in part upon the received distorted speech utterance.
摘要:
Parameters for distributions of a hidden trajectory model including means and variances are estimated using an acoustic likelihood function for observation vectors as an objection function for optimization. The estimation includes only acoustic data and not any intermediate estimate on hidden dynamic variables. Gradient ascent methods can be developed for optimizing the acoustic likelihood function.
摘要:
Parameters for distributions of a hidden trajectory model including means and variances are estimated using an acoustic likelihood function for observation vectors as an objection function for optimization. The estimation includes only acoustic data and not any intermediate estimate on hidden dynamic variables. Gradient ascent methods can be developed for optimizing the acoustic likelihood function.