Abstract:
Methods and apparatus for the generation of a cryptographic one way function (a key or keystream generator) for use in encrypting or decrypting binary data. A non-linear key or keystream generation algorithm using multiple feedback shift registers is provided. The feedback shift registers may be constructed utilizing an advanced mathematical construct called an extended Galois Field GF(2m). The key or keystream is generated as a non-linear function of the outputs of the multiple feedback shift registers, which may be a combination of static feedback shift registers and dynamic feedback shift registers. Dense primitive polynomials with many coefficients may be used to produce a cryptographically robust keystream for use as an encryption or decryption key.
Abstract translation:用于生成用于加密或解密二进制数据的加密单向函数(密钥或密钥流生成器)的方法和装置。 提供了使用多个反馈移位寄存器的非线性密钥或密钥流生成算法。 反馈移位寄存器可以利用称为扩展Galois Field GF(2MM)的高级数学结构来构造。 密钥或密钥流作为多反馈移位寄存器的输出的非线性函数产生,其可以是静态反馈移位寄存器和动态反馈移位寄存器的组合。 可以使用具有许多系数的密集原始多项式来产生用作加密或解密密钥的加密鲁棒密钥流。
Abstract:
A method for updating network-enabled devices with new identity data includes generating a plurality of new identity data records and loading the new identity data records onto an update server. A request is received at the update server for new identity data from at least one network-enabled device having a previously assigned identity linked to an identifier. The previously assigned identifier is linked to a new identifier that is linked to one of the new identity data records. One or more new identity data records are securely delivered to the network-enabled device.
Abstract:
A cryptography circuit provides secure processing of data by utilizing countermeasures that combat timing and power attacks. Superfluous operations such as multiplication operations, modular reductions by an integer, storage of data to memory are available for use by a processor to disguise the amount of power usage and the amount of time required to perform a cryptographic operation. A cryptographic key is available for use in order to trigger when these emulated operations occur. The occurrences of the emulated operations is controlled by the user to provide the preferred tradeoff between security and use of resources.
Abstract:
A system to transmit a set of programs from a transmitter to a receiver is used to accommodate different levels of security used for each program. When a high level of security is necessary for transmitting or receiving a program the transmitter and/or receiver is operable to accommodate that level of security. Thus, both transmitters and receivers are operable to be reconfigured to encrypt or decrypt, respectively, at different levels. Accordingly, differing amounts of programs can be transmitted or received based on the resource requirements needed at any level of security. Consequently, a high level of encryption/decryption requires more resources and allows the processing of fewer services, while a lower level of encryption/decryption allows more services to be transmitted/received.
Abstract:
Existing key encryption approaches are extended by using overlapping portions of encrypted information. Another provision inserts one or more bits of data to ensure correct encryption/decryption. The inserted data can also be used for authentication.
Abstract:
An apparatus and method for providing at least one root certificate are disclosed. Specifically, a plurality of root certificates is received and stored. Afterwards, a request is received from a first endpoint device for a desired root certificate, where the desired root certificate is used by the first endpoint device to verify an identity of a second endpoint device. Furthermore, the first endpoint device and the second endpoint device are associated with different certificate hierarchies. The desired root certificate is then sent to at least the first endpoint device.
Abstract:
A system and method for securely distributing PKI data, such as one or more private keys or other confidential digital information, from a PKI data generation facility to a product in a product personalization facility that is not connected to the PKI data generation facility and is assumed to be a non-secure product personalization facility. The system includes a PKI data loader for securely transmitting the encrypted PKI data transferred from the PKI data generator to a PKI server at the product personalization facility. The PKI server then transfers the PKI data to the product of interest, typically via a PKI station acting as a proxy between the PKI server and the product. In each communication step, PKI data being transferred is encrypted multiple times and the system is designed such that if any intermediate node is compromised with all of its keys, the overall system has not yet been compromised.
Abstract:
A system to transmit a set of programs from a transmitter to a receiver is used to accommodate different levels of security used for each program. When a high level of security is necessary for transmitting or receiving a program the transmitter and/or receiver is operable to accommodate that level of security. Thus, both transmitters and receivers are operable to be reconfigured to encrypt or decrypt, respectively, at different levels. Accordingly, differing amounts of programs can be transmitted or received based on the resource requirements needed at any level of security. Consequently, a high level of encryption/decryption requires more resources and allows the processing of fewer services, while a lower level of encryption/decryption allows more services to be transmitted/received.
Abstract:
A method for updating network-enabled devices with new identity data includes generating a plurality of new identity data records and loading the new identity data records onto an update server. A request is received at the update server for new identity data from at least one network-enabled device having a previously assigned identity linked to an identifier. The previously assigned identifier is linked to a new identifier that is linked to one of the new identity data records. One or more new identity data records are securely delivered to the network-enabled device.
Abstract:
An apparatus and method for providing at least one root certificate are disclosed. Specifically, a plurality of root certificates is received and stored. Afterwards, a request is received from a first endpoint device for a desired root certificate, where the desired root certificate is used by the first endpoint device to verify an identity of a second endpoint device. Furthermore, the first endpoint device and the second endpoint device are associated with different certificate hierarchies. The desired root certificate is then sent to at least the first endpoint device.