摘要:
An actuator includes a thermally activated active material member, and an external element configured to selectively engage the member and presenting a predetermined rate of thermal conductivity configured to transfer heat energy to and/or from the member, so as to reduce the actuation period or rate of cooling after actuation, when engaged.
摘要:
An actuator includes a thermally activated active material member, and an external element configured to selectively engage the member and presenting a predetermined rate of thermal conductivity configured to transfer heat energy to and/or from the member, so as to reduce the actuation period or rate of cooling after actuation, when engaged.
摘要:
An overheating protection system adapted for use with a shape memory alloy actuator element, includes at least one switching shape memory alloy element presenting a slower activation period than that of the actuator element, and configured to selectively prevent activation of the actuator element, when the actuator element is actually or predicted to be experiencing overheating; and a circuit comprising the system, wherein the switching element and/or a circuit implement functions to modify activation of the actuator element.
摘要:
An overheating protection system adapted for use with a shape memory alloy actuator element, includes at least one switching shape memory alloy element presenting a slower activation period than that of the actuator element, and configured to selectively prevent activation of the actuator element, when the actuator element is actually or predicted to be experiencing overheating; and a circuit comprising the system, wherein the switching element and/or a circuit implement functions to modify activation of the actuator element.
摘要:
A method of controlling a shape memory alloy actuator utilizing the change in resistance exhibited by the actuator over an actuation cycle, and more preferably, a derivative thereof, to identify at least one event, and generating a response based upon the event.
摘要:
A method of controlling a shape memory alloy actuator utilizing the change in resistance exhibited by the actuator over an actuation cycle, or a derivative thereof, to identify at least one event, such as, for example, a peak, valley, change in slope without reaching a valley, or a jump in resistance within the signal plot that corresponds to the start of actuation, end of actuation, an overload case, and the introduction of a resistive element respectively, and generating a response based upon the event.
摘要:
An energy harvesting system for converting thermal energy to mechanical energy includes a heat engine that operates using a shape memory alloy active material. The shape memory alloy member may be in thermal communication with a hot region at a first temperature and a cold region at a second temperature lower than the first temperature. The shape memory alloy material may be configured to selectively change crystallographic phase between martensite to austenite and thereby one of contract and expand in response to the first and second temperatures. A thermal conduction element may be in direct contact with the SMA material, where the thermal conduction element is configured to receive thermal energy from the hot region and to transfer a portion of the received thermal energy to the SMA material through conduction.
摘要:
An energy harvesting system for converting thermal energy to mechanical energy includes a heat engine that operates using a shape memory alloy active material. The shape memory alloy member may be in thermal communication with a hot region at a first temperature and a cold region at a second temperature lower than the first temperature. The shape memory alloy material may be configured to selectively change crystallographic phase between martensite to austenite and thereby one of contract and expand in response to the first and second temperatures. A thermal conduction element may be in direct contact with the SMA material, where the thermal conduction element is configured to receive thermal energy from the hot region and to transfer a portion of the received thermal energy to the SMA material through conduction.
摘要:
An energy harvesting system includes a heat engine and a component. The heat engine includes a belt, a first member, and a second member. The belt includes a strip of material and at least one wire at least partially embedded longitudinally in the strip of material. The wire includes a shape memory alloy material. A localized region of the at least one wire is configured to change crystallographic phase between martensite and austenite and either contract or expand longitudinally in response to exposure to a first temperature or a second temperature such that the strip of material corresponding to the localized region also contracts or expands. The first member is operatively connected to the belt and moves with the belt in response to the expansion or contraction of the belt. The component is operatively connected to the first member such that movement of the first member drives the component.