摘要:
A method for training a machine learning tool to generate a prediction in a business process includes receiving a business process model corresponding to the business process, the business process model including a plurality of tasks, identifying a cycling set at a decision point in the business process model, wherein the cycling set comprises at least one task that the business process model iterates through, and building a training table by determining a total number of sub-traces and a total number of variables from a plurality of execution traces of the business process model based on the cycling set identified at the decision point, wherein a new row of the training table is created for each of the sub-traces and a new column of the training table is created for each of the variables.
摘要:
A method for training a machine learning tool to generate a prediction in a business process includes receiving a business process model corresponding to the business process, the business process model including a plurality of tasks, identifying a cycling set at a decision point in the business process model, wherein the cycling set comprises at least one task that the business process model iterates through, and building a training table by determining a total number of sub-traces and a total number of variables from a plurality of execution traces of the business process model based on the cycling set identified at the decision point, wherein a new row of the training table is created for each of the sub-traces and a new column of the training table is created for each of the variables.