摘要:
According to one embodiment, an apparatus includes a reconstructing unit, a first control unit, a detecting unit, a generating unit, and a second control unit. The first control unit controls the reconstructing unit to reconstruct first images based on projection data collected in first periods. The detecting unit detects second periods which belong to pulsation cycles different from one another and in which an organ to be imaged is in the substantially same form, based on the first images. The generating unit generates data for reconstruction including projection data for the required angle range by combining projection data collected in third periods close to the second periods. The second control unit controls the reconstructing unit to reconstruct a second image based the data for reconstruction.
摘要:
A control unit performs helical scanning an subject while moving a top along a direction substantially parallel to a body axis. An acquisition unit acquires projection data via an X-ray detector. A projection data extraction unit extracts a projection data set necessary for the reconstruction of image data associated with a predetermined slice position from the projection data. A weighting unit assigns a smaller weight to first projection data of the extracted projection data than a weight assigned to second projection data, the first projection data being acquired outside a predetermined period including a predetermined acquisition time of the projection data at the predetermined slice position, the second projection data being acquired within the predetermined period. A reconstruction processing unit reconstructs image data on the basis of the first projection data and the second projection data to which the weights are assigned.
摘要:
According to one embodiment, an X-ray computed tomography apparatus includes an X-ray tube, an X-ray detector, and a rotating unit. The first reconstruction processing reconstructs a clinical image based on projection data detected by the X-ray detector. The second reconstruction processing reconstructs a noise image based on noise data. The clinical image is combined with the noise image.
摘要:
According to one embodiment, an X-ray computed tomography apparatus includes an X-ray generating unit and an area detector. The reconstruction processing unit reconstructs first and second volume data including an overlap region. The extraction unit extracts first and second slice images from the first and the second volume data respectively. The calculation unit calculates the difference value between a sum of pixel values in the first slice images and the sum of pixel values in the second slice images. The determination unit determines whether the difference value falls within a predetermined range. The combining unit combines the first and second volume data and sets a pixel value in the overlap region to a pixel value of the first volume data, a pixel value of the second volume data, or a value derived from pixel values of the first and second volume data.
摘要:
An X-ray computer tomography apparatus includes an X-ray tube, an X-ray detector, a rotating mechanism, a reconstruction unit which reconstructs multislice or volume image data based on the projection data detected by the X-ray detector, a profile generating unit which generates a CT value profile in the slice direction for each pixel by using image data, a profile portion extraction unit which extracts a profile portion exceeding a predetermined threshold from each of the CT value profiles, a scattered radiation distribution estimation unit which estimates a scattered radiation distribution centered on the profile portion based on the CT value integral and width of the profile portion, and a scattered radiation correction unit which corrects the image data based on the estimated scattered radiation distribution.
摘要:
A positron emission computed tomography apparatus according to an embodiment includes a detector, a coincidence counting information generating unit, and a body movement detecting unit. The detector detects annihilation radiation released from a subject. The coincidence counting information generating unit searches for sets of counting information, which counted a pair of annihilation radiations at substantially the same time, from a counting information list that is generated from output signals of the detector; generates a set of coincidence counting information for each retrieved set of counting information; and generates a time series list of coincidence counting information. Based on the time series list of coincidence counting information, the body movement detecting unit detects temporal changes in the body movement of the subject.